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I. Introduction

This web-based technical appendix contains additional supplementary material for the paper.

Sections II.-VII. mirror the sections of the same name and number in the paper. In Section

II., no additional material is required. In Section III., we provide further detail on the model,

including the derivations of all expressions and results reported in the paper. In Section IV.,

we report detailed information on the construction of the U.S. MCD and county data. In

Section V., we present additional results for the baseline empirical evidence section of the

paper. In Section VI., we include additional results for the further evidence section of the

paper. In Section VII., no additional material is required. In Section VIII., we discuss the

construction of the Brazilian data and report the results of the robustness test using these

data that is discussed in the paper.

II. Related Literature

No additional results required.
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III. Theoretical Model

In this section, we develop in further detail the theoretical model outlined in the paper.

We present the complete technical derivations for all the expressions and results reported in

the paper. In the interests of clarity and to ensure that this section of the web appendix is

self-contained, we reproduce some material from the paper, but also include the intermediate

steps for the derivation of expressions.

We consider an economy in which workers are mobile across locations and choose between

agriculture and non-agriculture as sectors of employment. The mechanism that drives an ag-

gregate reallocation of employment from agriculture to non-agriculture is either more rapid

productivity growth in agriculture combined with inelastic demand across the two goods or

a change in relative demand for these two goods (e.g. as a result of non-homothetic prefer-

ences). This aggregate reallocation a¤ects the relationship between population growth and

initial population density because agriculture�s share of employment varies with population

density. Agricultural specialization and population density are related because agriculture

is land intensive, exhibits weaker agglomeration forces, and is characterized by greater mean

reversion in productivity than non-agriculture, which implies that agriculture�s share of em-

ployment declines at the highest population densities.

III.A. Preferences and Endowments

Time is discrete and indexed by t. The economy consists of a continuum of locations i 2 [0; 1],
which are grouped into larger statistical units called MCDs or counties. Each location is

endowed with a measure Hi of land. The economy as a whole is endowed with a measure

Lt of workers who are perfectly mobile across locations. Workers are in�nitely lived and

endowed with one unit of labor, which is supplied inelastically with zero disutility, so that

employment equals population for each location.

Workers derive utility from consumption of goods, Cit, and residential land use, HUit,

and for simplicity we assume that the utility function takes the Cobb-Douglas form:1

U (Cit; HUit) = C
�
itH

1��
Uit ; 0 < � < 1; (1)

The goods consumption index, Cit, includes consumption of agriculture, cAit, and non-

1For empirical evidence using US data in support of the constant housing expenditure share implied by
the Cobb-Douglas functional form, see Davis and Ortalo-Magne (2011).
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agriculture, cNit, and is assumed to take the constant elasticity of substitution (CES) form:

Cit = [atc
�
Ait + (1� at) c

�
Nit]

1=� ; 0 < � =
1

1� � < 1; 0 < at < 1; (2)

where at captures the relative strength of demand for agriculture and, following a large

literature in macroeconomics, we assume that the two goods are complements: 0 < � < 1.2

III.B. Production Technology

Output in each sector is produced using labor and land according to a Cobb-Douglas pro-

duction technology:

Yjit = L
�j
jit�jt�jitL

�j
jitH

1��j
jit ; 0 < �j < 1; �j � 0; (3)

where Yjit, Ljit and Hjit denote output, employment and commercial land use respectively

in sector j 2 fA;Ng in location i at time t; L�jjit captures external economies of scale in
employment in a sector and location; �jt is a component of sectoral productivity that is

common across all locations (e.g. the aggregate state of technology); �jit is a component of

sectoral productivity that is speci�c to each location (e.g. natural resources and weather).3

Within each sector, output is homogeneous and markets are perfectly competitive, with

each good costlessly tradeable across locations.4 Each �rm is of measure zero and chooses

its inputs of labor and land to maximize its pro�ts taking as given productivity, goods and

factor prices, and the location decisions of other �rms and workers. Since economies of scale

are external to the �rm, they depend on aggregate (rather than �rm) employment in a sector

and location. As such, each �rm�s production technology exhibits constant returns to scale

in its own inputs of labor and land, which yields the standard result that payments to labor

and land exactly exhaust the value of output. We assume that agriculture is more land

intensive than non-agriculture (0 < �A < �N < 1) and that non-agriculture has stronger

external economies of scale than agriculture (0 � �A < �N).
The location-speci�c component of sectoral productivity (�jit) evolves stochastically over

time as a result of idiosyncratic shocks to productivity (�jit):

�jit = �jit�
�j
jit�1; t = f1; : : : ;1g ; �ji0 = �ji0; (4)

2See, for example, Ngai and Pissarides (2007).
3While agglomeration forces are captured here through external economies of scale, see Duranton and

Puga (2004) and Rosenthal and Strange (2004) for a discussion of other sources of agglomeration.
4In a separate technical note (Michaels et al. 2011), we develop a quantitative version of the model

that features bilateral transport costs and yet remains tractable by introducing Eaton and Kortum (2002)
heterogeneity and product di¤erentiation within each sector.
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where ln�jit is drawn from an independently and identically distributed continuous proba-

bility density function gj
�
ln�jit

�
, with mean zero, constant variance �2�j > 0 and bounded

support
h
ln�

j
; ln�j

i
.

The parameter �j captures the degree of mean reversion in location-speci�c productivity.

Since the relative productivity of locations in agriculture is heavily in�uenced by long-term

fundamentals, such as soil and climate, we assume greater mean reversion in location-speci�c

productivity in agriculture than in non-agriculture: 0 < �A < �N � 1. From this law of mo-
tion for productivity (4) and the distribution of idiosyncratic productivity shocks gj

�
ln�jit

�
,

we determine the limiting distribution of productivity in each sector j (zj (�jit)).

Land in each location can be allocated to residential or commercial use. When land is

used commercially, we assume that it can be employed either in agriculture or non-agriculture

but not in both sectors simultaneously, so that locations exhibit complete specialization in

production. Since locations are grouped into larger statistical units (MCDs or counties)

these larger statistical units exhibit incomplete specialization to the extent that they contain

a mixture of agricultural and non-agricultural locations.5

III.C. Consumption Expenditure

Utility maximization implies that each worker allocates constant shares of income � and

(1� �) to goods consumption and residential land use respectively:

Cit =
��it
Pt
; HUit =

(1� �)�it
rit

; (5)

where �it denotes income per worker; rit denotes the rental rate on land; Pt is the price

index for goods consumption. Since the goods consumption index (2) takes the CES form,

the dual price index for goods consumption is:

Pt =
�
a�t p

1��
At + (1� at)

� p1��Nt

� 1
1�� ; (6)

where pAt and pNt are the prices of the agricultural and non-agricultural goods respectively.

Costless trade ensures that these prices, and hence the price index for goods consumption,

are the same across all locations.
5The assumption of complete specialization in production simpli�es the allocation of land between res-

idential and commercial use. While this assumption can be relaxed, this substantially complicates the
characterization of general equilibrium without yielding much additional insight.
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Using utility maximization, consumer expenditure on the agricultural good is:

pAtcAit = a
�
t p
1��
At EitP

��1
t ;

where Eit = PtCit denotes total goods consumption expenditure. Using the above expression

and the price index for goods consumption, the share of agriculture in goods consumption

expenditure can be written as follows:

eAit = eAt =
pAtcAit
PtCit

=
1

1 +
�
1�at
at

�� �
pNt
pAt

�1�� ; (7)

where, with inelastic demand between the two goods (0 < � < 1), the share of agriculture

in goods consumption expenditure is increasing in its relative price (pAt=pNt).

Expenditure on land in each location is redistributed lump sum to the workers residing in

that location, as in Helpman (1998). Therefore total income in each location equals payments

to labor and land used in production plus expenditure on residential land use. Using complete

specialization in production, total income in a location producing good j 2 fA;Ng is:

�itLit = pjtYjit + (1� �)�itLit:

Income per worker in each location is therefore proportional to the value of output per

worker:

�it =
pjtYjit
�Lit

: (8)

III.D. Land Allocation

With competitive factor markets and complete specialization, commercial land in each lo-

cation is employed in the sector with the higher value marginal product of land. As a

result, for each agricultural productivity (�Ait) there is a cuto¤non-agricultural productivity

(��Nit (�Ait)), such that a location produces the non-agricultural good for �Nit � ��Nit (�Ait).
Similarly, for each non-agricultural productivity (�Nit), there is a cuto¤ agricultural produc-

tivity (��Ait (�Nit)), such that a location produces the agricultural good for �Ait > �
�
Ait (�Nit).

These cuto¤s for non-agricultural and agricultural productivity are related to one another

and de�ned by the equality of the value marginal products of land in the two sectors:

��Nit (�Ait) =
(1� �A) pAt�At�AitL

�A+�A
it H

��A
Ait

(1� �N) pNt�NtL
�N+�N
it H

��N
Nit

; (9)

��Ait (�Nit) =
(1� �N) pNt�Nt�NitL

�N+�N
it H

��N
Nit

(1� �A) pAt�AtL
�A+�A
it H

��A
Ait

;
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where we assume that the non-agricultural good is produced in the case of indi¤erence

between the two patterns of complete specialization.

The equilibrium rental rate on land in each location is determined by the requirement

that the total demand for land equals the total supply of land for that location. Since the

total demand for land is the sum of residential and commercial land use, the land market

clearing condition for a location producing good j 2 fA;Ng is:

HUit +Hjit = Hi:

Using the Cobb-Douglas upper tier of utility and production technology, this land market

clearing condition can be re-written in value terms as:

(1� �)�itLit +
�
1� �j

�
pjtYjit = ritHi:

Noting from (8) that total income in each location is proportional to the value of pro-

duction, the land market clearing condition becomes:�
(1� �) +

�
1� �j

�
�
�
�itLit = ritHi: (10)

Using this land market clearing condition and the fact from (5) that expenditure on resi-

dential land is a constant share of total income, the equilibrium allocation of land involves

a constant fraction of land allocated to residential and commercial use:

�Uj =
1� �

(1� �) +
�
1� �j

�
�
; �Y j =

�
1� �j

�
�

(1� �) +
�
1� �j

�
�
; (11)

where �Uj and �Y j denote the fractions of land used residentially and commercially, respec-

tively, when good j is produced.

III.E. Population Mobility

Workers are perfectly mobile across locations and can relocate instantaneously and at zero

cost. After observing the vector of agricultural and non-agricultural productivity shocks

across locations i in period t, �Ait and �Nit, each worker chooses their location to maximize

their discounted stream of utility, taking as given goods and factor prices and the location

decisions of other workers and �rms. Since relocation is instantaneous and costless, this

problem reduces to the static problem of maximizing their instantaneous �ow of utility.

Therefore population mobility implies the same real income across all populated locations:

�it

P�t r
1��
it

=
�kt

P�t r
1��
kt

= Vt; 8 i; k;
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where the dual price index for consumption goods, Pt, is the same for all locations; the rental

rate on land, rit, in general varies across locations.

Using land market clearing (10), the relationship between income per worker and the

value of production (8), the production technology (3) and the equilibrium allocation of land

(11), this population mobility condition can be re-expressed as:

~Vit =
pjt�jt�jit�

1��j
Y j H

1��j+ 1��
�

i L
�j�(1��j)� 1��

�

it

�j
= V

1=�
t Pt = ~Vt; (12)

�j � �
�
(1� �) +

�
1� �j

�
�
� 1��

� ;

where ~Vt is a normalized common level of real income across all populated locations.

Labor market clearing requires that the population of all locations sums to the economy�s

labor endowment: Z 1

0

Litdi = Lt: (13)

A �nal equation comes from goods market clearing, which requires that the share of the

agricultural good in aggregate revenue equals its share in aggregate expenditure. Using the

consumer expenditure share (7), this goods market clearing condition is:

rAt =
pAtYAt

pAtYAt + pNtYNt
=

a�t p
1��
At

a�t p
1��
At + (1� at)

� p1��Nt

= eAt: (14)

where YAt and YNt denote aggregate output of each good. Using the unit continuum of

locations, the productivity cuto¤s for agriculture and non-agriculture (9), and the land

allocation (11), aggregate output of each good can be expressed as:

YAt = �At

Z ��N

�N

"Z ��A

��A(�Nit)

�AitL
�A+�A
it (�Y AHi)

1��A zA (�Ait) d�Ait

#
zN (�Nit) d�Nit; (15)

YNt = �Nt

Z ��A

�A

"Z ��N

��N (�Akt)

�NktL
�N+�N
kt (�Y NHk)

1��N zN (�Nkt) d�Nkt

#
zA (�Akt) d�Akt; (16)

where zj (�jit) is the limiting distribution of location-speci�c productivity in sector j , which

depends on the law of motion for location-speci�c productivity (4) and the idiosyncratic

productivity shocks (gj
�
�jit
�
). We characterize these limiting distributions and their support�

�j;
��j
�
in the proof of Proposition 1 below.
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III.F. General Equilibrium

The general equilibrium of the model can be referenced by the limiting distributions of

productivity in each sector (zA (�Ait), zN (�Nit)), the sets of locations producing each good

(
At � f�Ait : �Ait > ��Ait (�Nit)g and 
Nt � f�Nit : �Nit � ��Nit (�Ait)g), the measure of work-
ers in each location (Lit), and the relative price of the agricultural good (pAt), where we

choose the non-agricultural good as the numeraire, so that pNt = 1. From this information,

all other endogenous variables of the model can be determined, as shown in the proof of

Proposition 1 below.

Proposition 1 Assuming �j <
�
1� �j

�
+ 1��

�
for j 2 fA;Ng, there exists a unique stable

equilibrium.

Proof. (a) Limiting productivity distributions: We begin by solving for the limiting

productivity distributions in each sector. From (4), we have:

ln �jit = �j ln �jit�1 + ln�jit; t = f1; : : : ;1g ; ln �ji0 = ln�ji0; (17)

where we assume 0 < �A < �N � 1 and ln�jit is independently and identically distributed
with mean zero, constant variance �2�j > 0 and bounded support.

(i) We begin with the case where 0 < �j < 1 for both sectors. Consider a given location i

within a given sector j. Using (17), productivity in year t can be expressed as:

ln �jit =
tX

k=0

�kj ln�jit�k: (18)

From this expression, mean log productivity at time t for location i within sector j is:

E [ln �jit] = 0;

while the variance of log productivity at time t for location i within sector j is:

V [ln �jit] =
tX

k=0

�
�2j
�k
�2�j:

Taking the limit as t!1, we have:

lim
t!1

V [ln �jit] =
�2�j
1� �2j

: (19)
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Since 0 < �j < 1, it follows that the variance of log productivity is �nite. Furthermore, the

covariance of log productivity between times t and s depends only on the time di¤erence

t� s:

C (ln �jit; ln �jis) =
�2�j�

t�s
j

1� �2j
:

Since have shown that fln �jitg has a constant mean, �nite second moments, and a covariance
that depends only on the time di¤erence, we have shown that fln �jitg is weakly or covariance
stationary. From (18), we also have:

E

24 ln �jit � tX
k=0

�kj ln�jit�k

!235 = 0:
It follows that {ln �jit} converges in mean square:

lim
t!1

E

24 ln �jit � tX
k=0

�kj ln�jit�k

!235 = 0:
which in turn implies that {ln �jit} converges in probability.

Pr

(
lim
t!1

ln �jit = lim
t!1

tX
k=0

�kj ln�jit�k

)
= 1:

Therefore the limiting distribution for productivity for location i in sector j is determined

by:

lim
t!1

ln �jit = lim
t!1

tX
k=0

�kj ln�jit�k; j 2 fA;Ng for 0 < �j < 1; (20)

where since
P1

k=0 �
k
j < 1, the right-hand side is convergent, and there exists a strictly

stationary limiting distribution for productivity.

Since the right-hand side of (20) is a linear combination of a sequence of independently

and identically distributed continuous random variables ln�jit�k, it follows that the limiting

distribution for productivity (zj (�jit)) is continuous in �jit.

Since the stochastic process for productivity (17) is the same for each location i within sector

j, the limiting distribution determined by (20) is the same for all locations and corresponds to

the limiting cross-section distribution of productivity across the unit continuum of locations

(zj (�jit)).

To determine the support of this limiting distribution, note that �jit, is bounded from above

since:

sup fln �jitg =
tX

k=0

�kj ln�j:
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Taking the limit as t!1 and using 0 < �j < 1, we have:

ln ��j = lim
t!1

sup fln �jitg =
ln�j
1� �j

, (21)

Note that �jit is also bounded from below since:

inf fln �jitg =
tX

k=0

�kj ln�j:

Taking the limit as t!1 and using 0 < �j < 1, we have:

ln �j = lim
t!1

inf fln �jitg =
ln�

j

1� �j
, (22)

where, from our assumption that gj
�
ln�jit

�
has bounded support and a mean of zero, we

have �1 < ln�
j
< 0 and hence 0 < �

j
< 1.

(ii)We next turn to the case of �N = 1. Consider a given location i within sector N . Using

(17), productivity in year t can be expressed as:

ln �Nit =
tX

k=0

ln�Nit�k: (23)

From this expression, mean productivity at time t for location i within sector N is:

E [ln �Nit] = 0;

while the variance of productivity at time t for location i within sector N is:

V [ln �Nit] =
tX

k=0

�2�N :

Taking the limit as t!1, we have:

lim
t!1

V [ln �Nit] =1: (24)

Nonetheless a limiting distribution for productivity exists. Since ln�Nit is independently and

identically distributed with constant mean and variance, it follows from the Central Limit

Theorem that ln �Nit converges to a normal distribution as t!1:

lim
t!1

ln �Nit � N
�
0; t�2�N

�
: (25)
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Therefore the limiting distribution for productivity in non-agriculture (zN (�Nit)) when �N =

1 is log normal and continuous in �Nit.

Since the stochastic process for productivity (17) is the same for each location within sector

N , it follows that the limiting cross-section distribution of productivity across the unit

continuum of locations (zN (�Nit)) is also log normal.

Note that �Nit is unbounded from above since:

sup fln �Nitg =
tX

k=0

ln�N :

Taking the limit as t!1, we have:

ln ��N = lim
t!1

sup fln �Nitg = lim
t!1

tX
k=0

ln�N =1: (26)

In contrast, note that �Nit is bounded from below by zero since:

inf fln �Nitg =
tX

k=0

ln�
N
:

exp finf fln �Nitgg =
tY

k=0

�
N
:

Taking the limit as t!1, we have:

�N = lim
t!1

exp finf fln �Nitgg = lim
t!1

tY
k=0

�
N
= 0, (27)

since, from our assumption that gj
�
ln�jit

�
has bounded support and a mean of zero, we

have �1 < ln�
j
< 0 and hence 0 < �

j
< 1.

(b) Population and goods produced: As shown in part (a) of the proof above, the

limiting productivity distribution in each sector {zA (�Ait), zN (�Nit)} can be determined

independently of all other endogenous variables of the model. In part (b) of the proof, we

now show how {Lit, �
�
Ait, �

�
Nkt, 
At, 
Nt} can be determined given these limiting distributions

and given the relative price of the agricultural good (pAt). In part (c) of the proof below, we

endogenize the relative price of the agricultural good and jointly determine {Lit, �
�
Ait, �

�
Nkt,


At, 
Nt, pAt} in general equilibrium.

Using the population mobility (12) condition, the price index (6) and our choice of numeraire
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(pNt = 1), we obtain the following closed-form expressions for the equilibrium population of

each location when it produces the agricultural and non-agricultural good respectively:

L̂Ait = LAit (pAt; Vt) =

24 �At�
1��A
Y A�

a�t + (1� at)
� p��1At

� 1
1�� V

1=�
t �A

35�A ��AAitH�A�A+1
i ; (28)

L̂Nit = LNit (pAt; Vt) =

24 �Nt�
1��N
Y N�

a�t p
1��
At + (1� at)

�� 1
1�� V

1=�
t �N

35�N ��NNitH�N�N+1
i ; (29)

�j � �
�
(1� �) +

�
1� �j

�
�
� 1��

� > 0; j 2 fA;Ng ;

�j �
1

1��
�
+
�
1� �j

�
� �j

> 0; j 2 fA;Ng ;

which determine equilibrium population as a function of the given relative price of the agricul-

tural good (pAt), the common level of utility across all populated locations (Vt), productivity

({�Ait, �Nit} which has already been determined), and parameters (since {�Y A, �Y N} are

determined as a function of parameters in (11) and Hi is an endowment).

Using the cuto¤ productivities for commercial land use (9), we also have:

i 2 
̂At = 
At (pAt; Vt) =
n
�Ait : �Ait > �̂

�
Ait

o
;

k 2 
̂Nt = 
Nt (pAt; Vt) =
n
�Nkt : �Nkt � �̂

�
Nkt

o
;

�̂
�
Ait = �

�
Ait (pAt; Vt) =

(1��N )�Nt�NitL̂
�N+�N
Nit (�Y NHi)

��N

(1��A)pAt�AtL̂
�A+�A
Ait (�Y AHi)

��A
;

�̂
�
Nkt = �

�
Nkt (pAt; Vt) =

(1��A)pAt�At�AktL̂
�A+�A
Akt (�Y AHk)

��A

(1��N )�NtL̂
�N+�N
Nkt (�Y NHk)

��N
;

9>>>>>>>>>>=>>>>>>>>>>;
; (30)

which determines the sets of locations producing the agricultural and non-agricultural goods

{
̂At , 
̂Nt}, as a function of the given relative price of the agricultural good (pAt), the

common level of utility across all populated locations (Vt through L̂At and L̂Nt), productivity

({�Ait, �Nit} which has already been determined), and parameters (since {�Y A, �Y N} are

determined as a function of parameters in (11) and Hi is an endowment).

From the labor market clearing condition (13), we also have:Z 1

0

L̂itdi = Lt; (31)

L̂it =

�
L̂Ait if i 2 
̂At;
L̂Nit if i 2 
̂Nt

:

12



From (28) and (29), limVt!0 L̂Ait = limVt!0 L̂Nit =1, limVt!1 L̂Ait = limVt!1 L̂Nit = 0, and

both L̂Ait and L̂Nit are monotonically decreasing in Vt. Using (28), (29) and (30) in the labor

market clearing condition (31), and noting that population in each location is decreasing in

Vt irrespective of which good is produced, the labor market clearing condition determines a

unique value of Vt as a function of the given value of pAt and parameters. Having determined

Vt, the equilibrium population and productivity cuto¤s {L̂Ait, L̂Nit, �̂
�
Ait, �̂

�
Nkt} in (28), (29)

and (30) depend solely on the given value of pAt and parameters.

Thus the model�s supply-side can be characterized in terms of relative goods prices, en-

dowments and parameters. Using (28), (29) and (30), we can also establish the following

comparative statics of {L̂Ait, L̂Nit, �̂
�
Ait, �̂

�
Nkt} with respective to the given value of pAt:

dL̂Ait
dpAt

> 0;
dL̂Nkt
dpAt

< 0;
d�̂
�
Ait

dpAt
< 0;

d�̂
�
Nkt

dpAt
> 0:

(32)

Since there is a unit continuum of locations and we have established above that the limiting

distributions of productivity in agriculture (zA (�Ait)) and non-agriculture (zN (�Nit)) are

continuous, it follows from aggregate output of each good ((15) and (16)) and the comparative

statics (32) that aggregate output of each good is a continuous function of the given value

of pAt:

dYAt
dpAt

> 0; (33)

dYNt
dpAt

< 0:

(c) Relative prices: Having characterized the supply-side of the model as a function of pAt,

we now use the goods market clearing condition (14) to combine supply and demand and

jointly determine {Lit, �
�
Ait, �

�
Nkt, 
At, 
Nt, pAt} in general equilibrium. The goods market

clearing condition in value terms equates the share of the agricultural good in aggregate

revenue (rAt) and expenditure (eAt). It proves convenient to rewrite this goods market

clearing condition in terms of monotonic transformations of rAt and eAt:

rAt
1� rAt

=
pAtYAt
YNt

=
a�t p

1��
At

(1� at)�
=

eAt
1� eAt

;
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where 0 < at < 1 and we have used our choice of numeraire: pNt = 1. Taking logarithms of

the left and right-hand sides, we obtain:

ln

�
rAt

1� rAt

�
= ln

�
YAt
YNt

�
+ ln pAt; (34)

ln

�
eAt

1� eAt

�
= ln

�
a�t

(1� at)�
�
+ (1� �) ln pAt; (35)

where 0 < � < 1. Di¤erentiating these relationships yields:

d ln
�

rAt
1�rAt

�
d ln pAt

=
d ln

�
YAt
YNt

�
d ln pAt

+ 1; (36)

d ln
�

eAt
1�eAt

�
d ln pAt

= (1� �) : (37)

From our analysis of the comparative statics of the model�s supply-side in (33), we have:

d ln
�
YAt
YNt

�
d ln pAt

> 0; (38)

which implies using (36) and (37):

d ln
�

rAt
1�rAt

�
d ln pAt

>
d ln

�
eAt
1�eAt

�
d ln pAt

: (39)

Furthermore, from aggregate output of each good (15) and (16), equilibrium population (28)

and (29), commercial land use (30) and labor market clearing (31), we have limpAt!0 YAt = 0

and limpAt!1 YNt = 0. It follows that:

lim
pAt!0

ln

�
YAt
YNt

�
= �1;

lim
pAt!1

ln

�
YAt
YNt

�
= +1:

Combining these results with (34) and (35), and noting 0 < � < 1, we have:

lim
pAt!0

�
ln

�
rAt

1� rAt

�
� ln

�
eAt

1� eAt

��
< 0; (40)

lim
pAt!1

�
ln

�
rAt

1� rAt

�
� ln

�
eAt

1� eAt

��
> 0: (41)

Using these two limiting results and the di¤erence in elasticities in (39), it follows that

there exists a single crossing-point for ln
�

rAt
1�rAt

�
and ln

�
eAt
1�eAt

�
at which 0 < pAt <1 and

14



0 < eAt = rAt < 1.

We illustrate this single crossing-point in Figure A.17, which displays ln
�

rAt
1�rAt

�
and ln

�
eAt
1�eAt

�
on the y-axis against ln pAt on the x-axis. From (35), ln

�
eAt
1�eAt

�
takes the value ln

�
a�t

(1�at)�
�

at the y-axis where ln pAt = 0, and is linear in ln pAt with slope 0 < � < 1. From (34), (39),

(40) and (41), ln
�

rAt
1�rAt

�
has a slope of strictly greater than one, and lies below ln

�
eAt
1�eAt

�
as ln pAt ! �1 and above ln

�
eAt
1�eAt

�
as ln pAt ! +1.

Given the unique equilibrium relative price of the agricultural good (pAt), the allocation of

workers across locations and the good produced by each location are uniquely determined

as shown above in part (b) of the proof above.

(d) Stability: To establish stability, we start from the unique equilibrium where ~Vit = ~Vkt

for all i; k in the population mobility condition (12) and reallocate a measure of workers from

location k to location i such that the labor market clearing condition continues to hold:

d ~Vit
dLit

dLit =

�
�j �

�
1� �j

�
� 1� �

�

� ~Vit
Lit
dLit < 0; (42)

d ~Vkt
dLkt

dLkt =

�
�j �

�
1� �j

�
� 1� �

�

� ~Vkt
Lkt
dLkt > 0;

where dLit > 0 and dLkt < 0; �j <
�
1� �j

�
+ 1��

�
; and we have used the fact that each

location is of measure zero relative to the economy as a whole and hence this reallocation

leaves pAt unchanged. From (42), it follows that the unique equilibrium is stable.

(e) Other endogenous variables: Having determined {zA (�Ait), zN (�Nit), 
At, 
Nt, LAit,

LNit, pAt}, all other endogenous variables of the model can be determined. Income per worker

in each location is given by:

�it =
1

�
pAt�At�Ait (Lit)

�A+�A�1 (�Y AHi)
1��A ; i 2 
At;

�kt =
1

�
�Nt�Nkt (Lkt)

�N+�N�1 (�Y NHk)
1��N ; k 2 
Nt:

The share of expenditure on agriculture is uniquely determined by pAt:

eAit = eAt =
1

1 +
�
1�at
at

�� �
1
pAt

�1��
Therefore equilibrium consumption of the agricultural and non-agricultural good are:

cAit =
eAt��it
pAt

15



cNit = (1� eAt)��it:

The equilibrium rental rate on land is:

rit =

�
(1� �) +

�
1� �j

�
�
�
�itLit

Hi
:

Therefore equilibrium residential land use is:

HUit =
(1� �)�it

rit
:

Proposition 2 With mean reversion in agricultural productivity (0 < �A < �N � 1) and

approximately constant proportional growth in non-agricultural productivity (�N ! 1): (a)

the dispersion of population density across non-agricultural locations is greater than the dis-

persion of population density across agricultural locations, (b) the most-densely-populated

locations only produce the non-agricultural good, (c) some less-densely-populated locations

produce the agricultural good and there is a range of population densities at which the share

of agriculture in employment strictly decreases with population density.

Proof. (a) To establish that the dispersion of population across non-agricultural locations

is greater than the dispersion of population across agricultural locations as �N ! 1, we �rst

use population mobility (12) to solve for population density in each location:

Lit
Hi

= �
�j
jt�

�j
jitH

�j�j
i ; (43)

�
�j
jt =

"
pjt�jt�

1��j
Y j

PtV
1=�
t �j

#�j
;

�j �
1

1��
�
+
�
1� �j

�
� �j

> 0;

�j � �
�
(1� �) +

�
1� �j

�
�
� 1��

� > 0:

Note that �
�j
jt takes the same value across all locations producing the same good. The

variance of log population density across agricultural locations is:

VA
�
ln

�
Lit
Hi

��
= �2AV (ln �Ait) + (�A�A)

2V (lnHi) ; (44)
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for i 2 
At; V (�) denotes a variance; the covariance term is zero because the idiosyncratic

shocks to productivity (ln�jit) are independently and identically distributed for all t 2
f0; : : : ;1g. The variance of log population density across non-agricultural locations is:

VN
�
ln

�
Lkt
Hk

��
= �2NV (ln �Nkt) + (�N�N)

2V (lnHk) ; (45)

for k 2 
Nt; where the covariance term is again zero. From (19) and (24):

lim
t!1

V [ln �Ait] =
�2�A
1� �2A

; 0 < �A < �N � 1:

lim
t!1

V [ln �Nit] =
�2�N
1� �2N

; 0 < �N < 1:

lim
t!1

V [ln �Nit] =1; �N = 1:

Since V (lnHi) <1, it follows from (44) and (45) that:

lim
�N!1

�
lim
t!1

VN
�
ln

�
Lkt
Hk

���
> lim

t!1
VA
�
ln

�
Lit
Hi

��
:

(b) We now establish that the most-densely-populated locations only produce the non-

agricultural good. From equilibrium population (43), the highest log population density for

an agricultural location i 2 
At is:

sup

�
ln

�
Lit
Hi

��
= �A ln �At + sup f�A ln �Ait + �A�A lnHig ; (46)

while the highest population density for a non-agricultural location k 2 
Nt is:

sup

�
ln

�
Lkt
Hk

��
= �N ln �Nt + sup f�N ln �Nkt + �N�N lnHkg ; (47)

From (21) and (26):

ln ��A = lim
t!1

sup fln �Aitg =
ln�A
1� �A

; 0 < �A < �N � 1;

ln ��N = lim
t!1

sup fln �Nitg =
ln�N
1� �N

, 0 < �N < 1;

ln ��N = lim
t!1

sup fln �Nitg =1; �N = 1:

Since lnHi <1 for all i, it follows from (46) and (47) that:

lim
�N!1

�
lim
t!1

sup

�
ln

�
Lkt
Hk

�
: k 2 
Nt

��
> lim

t!1
sup

�
ln

�
Lit
Hi

�
: i 2 
At

�
:
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(c) We now establish that there is a range of population densities at which the share of

agriculture in employment strictly decreases with population density. De�ne the set of

locations with log population densities in the interval
h
ln
�
Lb
Hb

�
; ln
�
LB
HB

��
by 
Bb . The share

of agriculture in employment for this set of locations is:

$

Bb
A =

R
i2f
At\
Bb g LAitdiR

i2f
At\
Bb g LAitdi+
R
k2f
Nt\
Bb g LNktdk

:

From the proof of part (b) above, the most-densely-populated locations only produce the

non-agricultural good. Therefore, for su¢ ciently high values of ln
�
Lb
Hb

�
and ln

�
LB
HB

�
, there

exists an interval 
Bb for which
R
i2f
At\
Bb g LAitdi = 0,

R
k2f
Nt\
Bb g LNktdk > 0, and hence

$

Bb
A = 0.

Now, from the proof of Proposition 1, recall that we established the existence of a unique

equilibrium relative price of the agricultural good 0 < pAt <1 at which 0 < eAt = rAt < 1.

Since rAt > 0 at this unique equilibrium value of pAt, YAt > 0 and some less-densely-populated

locations produce the agricultural good.

Since some less-densely-populated locations produce the agricultural good, and there exists

an interval of su¢ ciently high population densities at which no location produces the agri-

cultural good, it follows that there exists an interval of population densities at which the

share of agriculture in employment is strictly decreasing in population density.

Proposition 3 A rise in aggregate productivity in agriculture (�At) or a reduction in relative

demand for agriculture (at) reallocate employment from agriculture to non-agriculture.

Proof. From goods market clearing (14), the share of the agricultural good in aggregate

revenue (rAt) is equal in equilibrium to its share in aggregate expenditure (eAt):

rAt = eAt; (48)

rAt =
pAtYAt

pAtYAt + YNt
;

eAt =
1

1 +
�
1�at
at

��
p��1At

;

YAt = �At

Z ��N

�N

"Z ��A

��A(�Nit)

�AitL
�A+�A
it (�Y AHi)

1��A zA (�Ait) d�Ait

#
zN (�Nit) d�Nit;
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YNt = �Nt

Z ��A

�A

"Z ��N

��N (�Akt)

�NktL
�N+�N
kt (�Y NHk)

1��N zN (�Nkt) d�Nkt

#
zA (�Akt) d�Akt:

To determine the general equilibrium e¤ect of changes in {�At, at}, we �rst di¤erentiate the

goods market clearing condition (48) holding constant the allocation of factors of production

at their initial equilibrium values and solve for the implied change in the relative price of

the agricultural good (pAt). Using this implied change in pAt, we next determine how the

allocation of factors of production must change in response to the change in {�At, at}.

De�ne the transformed variable bt = 1�at
at
, which is monotonically decreasing in at.

Note the following partial derivatives of rAt and eAt, where these partial derivatives are

evaluated holding constant the initial allocation of factors of production {Lit, Lkt, �
�
A (�Nit),

��N (�Akt) : i 2 
At; k 2 
Nt}:
@rAt
@bt

bt
rAt
= 0;

@eAt
@bt

bt
eAt
= �� (1� eAt) ;

@rAt
@�At

�At
rAt

= (1� rAt) ;
@eAt
@�At

�At
eAt

= 0;

@rAt
@pAt

pAt
rAt
= (1� rAt) ;

@eAt
@pAt

pAt
eAt
= (1� �) (1� eAt) ;

(49)

where bt =
1� at
at

:

(i) �At : Di¤erentiating the revenue and expenditure shares at the initial equilibrium holding

constant the initial allocation of factors of production {Lit, Lkt, �
�
A (�Nit), �

�
N (�Akt) : i 2


At; k 2 
Nt}, we have:
drAt =

@rAt
@�At

d�At +
@rAt
@pAt

@pAt
@�At

d�At;

deAt =
@eAt
@pAt

@pAt
@�At

d�At:

These equations can be re-written as follows:

drAt
rAt

=

�
@rAt
@�At

�At
rAt

�
d�At
�At

+

�
@rAt
@pAt

pAt
rAt

� �
@pAt
@�At

�At
pAt

�
d�At
�At

;

deAt
eAt

=

�
@eAt
@pAt

pAt
eAt

� �
@pAt
@�At

�At
pAt

�
d�At
�At

:

Imposing the goods market clearing condition before and after the change in �At, we have:

drAt
rAt

=
deAt
eAt

:
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Substituting for drAt=rAt and deAt=eAt in the above expression, and using the partial deriv-

atives (49), we obtain:

(1� rAt) + (1� rAt)
�
@pAt
@�At

�At
pAt

�
= (1� �) (1� eAt)

�
@pAt
@�At

�At
pAt

�
:

Since these derivatives are taken from the initial equilibrium, where rAt = eAt, we obtain:

@pAt
@�At

�At
pAt

= �1
�
:

Therefore, holding constant the allocation of factors of production at their initial equilibrium

values, a rise in �At implies a reduction in pAt. Furthermore, since 0 < � < 1, the implied

reduction in pAt is more than proportionate to the rise in �At.

We now examine the implications of such a reduction in pAt for the equilibrium allocation

of factors of production. From the population mobility condition (12), we have:

~Vit = ~Vkt

pAt�At�Ait�
1��A
Y A H

1��A+
1��
�

i L
�A�(1��A)�

1��
�

it

�A
=

�Nt�Nkt�
1��N
YN H

1��N+1��
�

k L
�N�(1��N )�

1��
�

kt

�N

(50)

for i 2 
At, k 2 
Nt. The combination of a rise in �At and a more than proportionate
reduction in pAt reduces normalized real income in agricultural locations on the left-hand side

of (50) relative to normalized real income in non-agricultural locations on the right-hand side

of (50). As a result, population is reallocated from agricultural to non-agricultural locations.

Additionally, the combination of a rise in �At and a more than proportionate reduction in pAt

reduces the value marginal product of land in agriculture relative to that in non-agriculture,

which induces some locations to switch from agricultural to non-agricultural land use. It

follows that a rise in �At reallocates employment from agriculture to non-agriculture.

(ii) at: To examine the comparative statics of a reduction in at, we consider an increase in

the transformed variable bt = 1�at
at
. Di¤erentiating the revenue and expenditure shares at

the initial equilibrium holding constant the initial allocation of factors of production {Lit,

Lkt, �
�
A (�Nit), �

�
N (�Akt) : i 2 
At; k 2 
Nt}, we have:

drAt =
@rAt
dpAt

@pAt
@bt

dbt;

deAt =
@eAt
@bt

dbt +
@eAt
@pAt

@pAt
@bt

dbt:

20



These equations can be re-written as follows:

drAt
rAt

=

�
@rAt
dpAt

pAt
rAt

� �
@pAt
@bt

bt
pAt

�
dbt
bt
;

deAt
eAt

=

�
@eAt
@bt

bt
eAt

�
dbt
bt
+

�
@eAt
@pAt

pAt
eAt

� �
@pAt
@bt

bt
pAt

�
dbt
bt
:

Imposing the goods market clearing condition before and after the change in bt, drAt=rAt =

deAt=eAt, and using the partial derivatives (49), we obtain:

�� (1� eAt) + (1� �) (1� eAt)
�
@pAt
@bt

bt
pAt

�
= (1� rAt)

�
@pAt
@bt

bt
pAt

�
:

Since these derivatives are taken from the initial equilibrium, where rAt = eAt, we obtain:

@pAt
@bt

bt
pAt

= �1:

Therefore, holding constant the allocation of factors of production at their initial equilibrium

values, a rise in relative demand for non-agriculture, bt, implies a reduction in the relative

price of agriculture, pAt. From the population mobility condition (50), this reduction in

pAt reallocates population from agricultural to non-agricultural locations. Additionally, the

reduction in pAt reduces the value marginal product of land in agriculture relative to that in

non-agriculture, which induces some locations to switch from agricultural to non-agricultural

land use. It follows that a reduction in at (a rise in bt = 1�at
at
) also reallocates employment

from agriculture to non-agriculture.

Proposition 4 (a) For locations that continue to produce the agricultural good, there is

a decreasing relationship between population growth and initial population density, (b) For

locations that continue to produce the non-agricultural good, population growth becomes un-

correlated with initial population density as �N ! 1.

Proof. (a) For locations that continue to produce the agricultural good in time t and t� 1,
equilibrium population (43) and the stochastic process for productivity (4) imply:

� lnLAit = �Ait � (1� �A) ln (LAit�1=Hi) + uAit; (51)

�Ait = �A ln

�
�At
��AAt�1

�
+ �A�A (1� �A) lnHi;
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uAit = �A ln�Ait;

where � denotes the di¤erence operator and uAit is independently and identically distrib-

uted. From (51) and 0 < �A < 1, it follows that there is a decreasing relationship between

population growth and initial population density for locations that continue to produce the

agricultural good.

(b) For locations that continue to produce the non-agricultural locations at time t and t�1,
equilibrium population (43) and the stochastic process for productivity (4) imply:

� lnLNit = �Nit � (1� �N) ln (LNit�1=Hi) + uNit; (52)

�Nit = �N ln

�
�Nt
��NNt�1

�
+ �N�N (1� �N) lnHi;

uNit = �N ln�Nit;

where � again denotes the di¤erence operator and uNit is independently and identically

distributed. From (52), it follows that as �N ! 1 population growth exhibits constant

proportional growth for locations that continue to produce the non-agricultural good.

IV. Data Description

In Subsection IV.A., we report further details on the data sources and de�nitions for the

U.S. MCD data for 1880, 1940 and 2000. In Subsection IV.B., we discuss the construction

of comparable geographical units over time using the MCD data. In Subsection IV.C., we

discuss the samples considered using the MCD data. In Subsection IV.D., we discuss the

construction of the U.S. county sub-periods data for twenty-year intervals from 1880-2000.

IV.A. MCD Data Sources and De�nitions

The main source of data on MCDs is the U.S. Census. We also use numerous other sources,

including historical maps and gazetteers, as described below.

Data on MCD employment, population, land area and location in 2000 comes from the

American Fact�nder of the U.S. Census Bureau (Census 2000b). Agriculture, manufacturing

and services are de�ned using the following sector classi�cation: �agriculture�includes agri-

culture, forestry, �shing and hunting; �manufacturing�includes mining and construction as

well as manufacturing; �services� include trade, transportation, warehousing, information,
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�nance, insurance, real estate, professional, scienti�c, management, administrative, educa-

tion, health, arts, entertainment, accommodation and food services; �non-agriculture� is

de�ned as the sum of �manufacturing�and �services.�

In addition to these 2000 data, we have data on population in 1940 and data on population

and employment in 1880. The population information for 1940 comes from the 1940 Census

Files (Census 1940), which also contain a full set of maps that allow us to identify the

location of 1940 MCDs. However, our 1940 MCD data contain no employment information,

which restricts their suitability for our analysis.

The 1880 population and employment data come from the North Atlantic Population

Project (NAPP 2006). We use the 1950 occupation and industry classi�cations as provided

by NAPP. We classify people for whom industry information is available into 3 categories:

agriculture, manufacturing and services. Agricultural workers are those with 1950 industry

codes 105� 126, which are mainly agriculture, forestry and �shing. Manufacturing workers
are those with industry classi�cations 206� 499, and services include all other NAPP entries,
except in the cases where the industry was illegible, missing, not reported, or not available.

Some people identi�ed themselves as part of the labor force, but did not report their

industry, or reported it in an illegible way, or were unclassi�able. In 1880 these amounted to

about 15 percent of the workers classi�ed above. In order to categorize these workers we use

their self-reported occupations. If we classi�ed most of the workers in a given occupation for

which we did have industry information into, say, services, we also assigned all the workers

in that occupation who did not report an industry to services. While this process may

have introduced some error, for the vast majority of occupations one of the three sectors of

agriculture, manufacturing and services accounts for a large majority of employment.

To determine the geographic location of MCDs in 1880 we used a variety of sources.

For states for which 1880 maps of MCDs were available, we georeferenced those maps. For

states for which 1880 maps of MCDs were not available, we started with the aforementioned

1940 maps and worked backwards through the micro�lms for the 1930, 1920, 1910, 1900 and

1890 censuses, where changes to the names and organization of MCDs are documented in

footnotes (NARA 2002, 2003). Finally, we supplemented this information with additional

maps and gazetteers as reported in Appendix Table A.7 below.

The geographical control variables were created using maps from ESRI (1999). These

geographical control variables are dummy variables equal to one if an MCD borders the

23



ocean, if the distance between the centroid of an MCD and the closest river is less than 50

kilometers, if the distance between the centroid and the closest lake is less than 50 kilometers,

and if the MCD contains coal.

IV.B. Linking 1880 and 1940 MCDs to 2000 MCDs

In matching MCDs from 1880, 1940, and 2000 we strove to cover all of the population and

land area within each state in each of the three censuses, while consistently matching MCDs

over time. This raised six challenges. First, some MCDs were renamed. Second, some

MCDs merged over time. Third, in some areas county boundaries were redrawn, such that

MCDs were reassigned to other counties. Fourth, in some areas the census did not provide

su¢ cient geographical information. Fifth, some MCDs were split. Sixth, in some areas MCD

boundaries were rede�ned.

In order to deal with these challenges, we aggregated some of the MCDs, and this process

of aggregation required us to identify the geographic location of contemporary and historical

MCDs. We started with a digital Geographic Information Systems (GIS) map from the

Bureau of the Census of MCDs in 2000 (see Census 2000a,c,d). For the earlier censuses we

assigned coordinates to the MCDs ourselves, using the 1940 MCD maps provided by the

Bureau of the Census (Census 1940) and a variety of historical maps and gazetteers for 1880

(see Appendix Table A.7 below). Using these historical sources, we assigned geographic

coordinates to MCDs in 1940 and 1880.6

To do so, we georeferenced the historical maps to the digital 2000 map using ArcGIS

software. We then assigned the centroids manually in a point-shape�le. In total we assigned

around 22,000 coordinates for 1880 and around 50,000 for 1940. In some states we were not

able to assign coordinates, and these states are not divided into sub-county units in the �nal

dataset. The geographical distribution of these states can be seen in Map 1 in the paper

(these states are labeled as having �counties only�or �no data�) or in Appendix Table A.6

below. For the other states we were able to determine the location of all MCDs in 1940

given the high quality of the maps provided by the census (Census 1940). For 1880 we

were are able to determine the location of the vast majority of MCDs, with the main reason

for unmatched 1880 MCDs being that the digital 1880 MCD data (NAPP 2006) contained
6When assigning the coordinates for 1940 we generally used the approximate geographic centroid

of the MCD, except when the MCD was dominated by a single town. In this case we used the
coordinates of the town. MCDs were categorized as being dominated by a single town if the census
mentioned exactly one town within the MCD.
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entries with missing names. Out of the approximately 22,000 MCDs listed by NAPP for

1880, only 150 MCDs remained unmatched (see below for further discussion).

We used the coordinates assigned to 1880 and 1940 MCDs to create geographic units

that are stable over time and to which we could assign the data with reasonable con�dence.

To do so, we linked the 1880 and 1940 MCDs to the 2000 MCD in which their coordinates

fell. In some cases multiple 1880 or 1940 MCDs fell into a single 2000 MCD, in which case

we aggregated them into the single 2000 MCD.

We next proceeded in a number of steps. In a �rst step, we merged together 2000 MCDs

in cases where they shared the same state, county and name. These were often cases where

one MCD denoted a town and another denoted the surrounding area, and changes to the

boundaries between the town and its surrounding area over time complicated the allocation

of population to the two areas separately. This �rst step involved 1,163 aggregations.

In a second step, we aggregated some MCDs to the county level (using 1880 and 1940

county de�nitions) in counties for which we could not �nd all the 1880 MCDs on the map

due to missing names. This second step involved the aggregation of 85 counties.

In a third step, we considered each 2000 MCD that had not been yet matched to at

least one 1880 MCD and at least one 1940 MCD. These unmatched MCDs are referred to as

�uncovered,�while the other already-matched MCDs are referred to as �covered.�Uncovered

MCDs existed either if an older MCD was split (such that there were multiple MCDs in 2000

where there used to be one), or if boundaries were redrawn. In both cases we used proximity

as a guide to solving the problem of uncovered MCDs. We determined the location of all

2000 centroids, and matched each uncovered MCDs to the closest 2000 MCD within the

same county (using 1880 county de�nitions) that was covered.

Finally, we manually aggregated some additional units to deal with changes in municipal

boundaries. We merged the MCDs of Bronx, Brooklyn, Manhattan, Queens, and Staten

Island, since they are all parts of New York City. We also merged Saint Louis, Missouri,

with its neighboring county, from which it split o¤ at one point. Finally, we merged the

MCDs Peoria and West Peoria in Illinois, which are part of the same urban area but not

combined in the algorithm above.
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IV.C. MCD Data Samples

This subsection discusses in further detail the samples used for our MCD data. Our baseline

sample comprises �A and B� states (10,864 observations), and we also use a sample of

�A�states (4,439 observations), a county sample (2,496 observations), and a hybrid sample

(19,229 observations).

The �A and B�sample consists of states in which the ratios of the number of matched

MCDs to the number of 1880 MCDs and 2000 MCDs are larger than 0.7. This restricts the

extent to which we aggregate MCDs (a process that may involve imprecisions due to changes

in boundaries), while maintaining a sizeable number of states. This sample consists of 15

states (plus Washington DC), most of which are found in the North-East and Mid-West of

the U.S., as shown in Map 1 in the paper and listed in Appendix Table A.6 below.

The �A�sample is more restrictive: it only uses states for which the ratios of the number

of matched MCDs to the number of 1880 MCDs and 2000 MCDs are larger than 0.9. These

are the states in which there is a close correspondence between the 1880, 1940 and 2000

MCDs. This sample includes 8 states and Washington DC, and apart from Indiana and

Iowa, all of these were part of the original 13 colonies.

To complement the MCD data, we use a sample of counties, which tackles the problem of

representativeness by expanding the number of states that we use. The tradeo¤ is that in this

sample we analyze data at a higher level of spatial aggregation. We exclude Alaska, Hawaii

and Oklahoma, which were not included in the 1880 census. We also exclude North and

South Dakota, which had not attained statehood in 1880, and did not have stable county

boundaries at that time. For all other states, 1880 and 1940 counties are linked to 2000

counties using the centroids of the 1880 and 1940 counties.

The hybrid sample combines MCD and county data, and uses for each state the smallest

unit for which we have data �MCDs for 30 states and counties for the remaining states in

our sample.

A key advantage of the MCD data is their small spatial scale, which enables us to sharply

draw the distinction between rural and urban areas that is central to our analysis. The

average MCD in our baseline sample for the �A and B�states has an area of around 115

kilometers squared and a population of approximately 8,800 in 2000. In contrast, the average

county in the �A and B� states has an area of around 1,500 kilometers squared and a

population of approximately 115,000 in 2000. In Figure A.1 of this web appendix, we show
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that using MCDs rather than counties considerably enhances the density of observations for

which we observe a range of initial shares of employment in agriculture in 1880.

IV.D. County Sub-Periods Data

We also construct a panel dataset on U.S. counties at twenty-year intervals from 1880-2000,

which covers almost all of the area of the continental United States. We again exclude Alaska,

Hawaii, Oklahoma, North Dakota and South Dakota, which had not attained statehood

in 1880, and were either excluded from the 1880 Census or did not have stable county

boundaries at that time. We also exclude Wyoming because of missing information in the

GIS shape�les used to create the county subperiods data. The data sources for this panel

of counties are the Integrated Public Use Microdata Series (IPUMS), County Data Books

from the Inter-University Consortium for Political and Social Research (ICPSR), National

Historical Geographic Information System (NHGIS), and the American Fact�nder of the

U.S. Census Bureau.

For 1880, 1900 and 1920, we use IPUMS data, which are 1 percent samples from the

U.S. Census microdata that are representative at the county level. For 2000, we use county-

level data from American Fact�nder. For 1940, 1960 and 1980, the IPUMS data do not

include county identi�ers, so we use instead county-level data from the County Data Books

(ICPSR). While all three data sources (IPUMS, ICPSR, and American Fact�nder) ultimately

derive employment and population data from the U.S. Census, the aggregation of industries

in the ICPSR data is coarser. When we decompose employment into sectors, we de�ne

�agriculture,��manufacturing�and �services�in the ICPSR and American Fact�nder data

in as consistent a way as possible with the de�nitions we use in the IPUMS data. Our county

dataset also includes land area for 1880 (from ICPSR) and data from the Fact�nder for 2000

on median house prices (variable H076001), and median wages (variable P068001). Finally,

we include data from ICPSR on farm area and the nominal value of farm output from the

agricultural census closest to the years included in our county sub-periods dataset, with the

exception of 1920, for which no information on farm output is provided by ICPSR.

Over the 120-year period covered by our dataset, county boundaries change over time.

In the 45 states (plus Washington DC) included in our sample, about 70 percent of 1880

counties have the same boundaries in 2000 (for the �A and B�states this �gure is around

85 percent). Of the counties whose boundaries have changed, many were split, so the total
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number of counties across all states in our sample rises from 2,496 in 1880 to 2,984 in 2000.

Apart from the splitting of counties, other challenges to matching counties over time are the

renaming of some counties and some changes in county codes.

To construct geographic units that are stable, we follow a similar procedure as for our

MCD data. Since we have GIS shape�les for 1880 counties from NHGIS, and since most of

the changes in boundaries involved splitting of counties, we use the 1880 counties as the base

for matching counties over time. For each of the other years included in our dataset, we �rst

construct the geographical centroid of each county in that year, again using GIS shape�les

from NHGIS. We next match each county centroid in each of the other years to the 1880

county in which it falls. Of the 1880 counties in our sample, 2,425 (about 97 percent) are

matched to at least one county in each of the following years. We aggregate the remaining 71

unmatched 1880 counties with the nearest matched 1880 county within the same state based

on the distance between the counties�centroids. From this procedure, we obtain a balanced

panel of counties that is reasonably stable over time and covers all of the population and

employment in each state in our sample in each year.

V. Baseline Empirical Results

V.A. Empirical Speci�cation

No additional results required.

V.B. Stylized Facts

We begin by discussing in further detail the construction of the �gures in the panels of Figure

I in the paper. We next discuss a robustness test reported in the paper that uses initial log

population size instead of initial log population density.

Panel A, Figure I in the paper: This �gure shows the distribution of log population

per square kilometer in 1880 and 2000 estimated using non-parametric speci�cation (7) in the

paper for the sample of �A and B�states. Population density bins are de�ned by rounding

down log population density for each MCD to the nearest single digit after the decimal point.

For example, all MCDs with log population density greater than or equal to 0.1 and less

than 0.2 are grouped together in bin 0.1.

Panel B, Figure I in the paper: The solid line shows the mean population growth

rate from 1880-2000 within each population density bin based on estimating non-parametric
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speci�cation (8) in the paper for the sample of �A and B�states. Population density bins

are de�ned in the same way as in Panel A. The dashed lines show 95 percent con�dence

intervals based on robust standard errors clustered by county. Since population density bins

at the extreme ends of the distribution typically contain at most one observation, the �gure

(but not the estimation) omits the 1 percent most and least dense MCDs in 1880.

Panel C, Figure I in the paper: The solid line shows the mean share of agriculture

in 1880 employment within each population density bin based on estimating non-parametric

speci�cation (8) in the paper for the sample of �A and B�states. Population density bins

and con�dence intervals are constructed in the same way as in Panels A and B above. Since

population density bins at the extreme ends of the distribution typically contain at most one

observation, the �gure (but not the estimation) omits the 1 percent most and least dense

MCDs in 1880.

Panel D, Figure I in the paper: This �gure shows the distribution of log agricultural

employment and log non-agricultural employment (employment in manufacturing and ser-

vices) per square kilometer in 1880 and 2000 estimated using non-parametric speci�cation (7)

in the paper for the sample of �A and B�states. Employment density bins are constructed

in an analogous way as in Panels A and B above.

Panel E, Figure I in the paper: The solid line shows the mean growth rate of agricul-

tural employment from 1880-2000 within each population density bin based on estimating

non-parametric speci�cation (8) in the paper for the agricultural subsample (an agricultural

share in 1880 employment of greater than 0.8) within �A and B�states. Population density

bins and con�dence intervals are constructed in the same way as in Panels A and B above.

Since population density bins at the extreme ends of the distribution typically contain at

most one observation, the �gure (but not the estimation) omits the 1 percent most and least

dense MCDs in 1880.

Panel F, Figure I in the paper: The solid line shows the mean growth rate of

non-agricultural employment (employment in manufacturing and services) from 1880-2000

within each population density bin based on estimating non-parametric speci�cation (8) in

the paper for the non-agricultural subsample (an agricultural share in 1880 employment of

less than 0.2) within �A and B�states. Population density bins and con�dence intervals are

constructed in the same way as in Panels A and B above. Since population density bins at

the extreme ends of the distribution typically contain at most one observation, the �gure
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(but not the estimation) omits the 1 percent most and least dense MCDs in 1880.

Figure A.2 in this web appendix: This �gure displays the same speci�cation as in

Panel B in Figure I in the paper but uses initial log population size instead of initial log

population density on the x-axis. We �nd a similar pattern of departures from Gibrat�s

Law of constant proportional growth: there is an initially decreasing, later increasing and

ultimately roughly constant relationship between population growth and initial population

size. This similarity of the results re�ects the approximately log linear relationship between

initial population size and initial population density in our data. Population density bins

and con�dence intervals are constructed in the same way as in Panels A and B of Figure I

in the paper, as discussed above.

Table A.2: Using the nominal value of farm output per kilometer squared as a crude

measure of agricultural productivity, we �nd evidence of mean reversion in agricultural pro-

ductivity using our county sub-periods data. In Table A.2, we report the results of regressing

log farm output per kilometer squared in a given year on log farm output per kilometer

squared in a previous year.7 Since the regression is run using the log level of productivity

as the dependent variable (rather than productivity growth), a coe¢ cient of less than one

on lagged log productivity implies mean reversion in productivity. Each cell in the table

corresponds to a separate regression across counties for a given pair of years. In general,

we �nd estimated coe¢ cients that are less than and statistically signi�cantly di¤erent from

one, with greater degrees of mean reversion occurring in earlier years. This pattern of re-

sults is consistent with the historical literature on the development of U.S. agriculture (see

for example Cochrane 1979). As discussed by Olmstead and Rhode (2002) for the case

of wheat, a number of the productivity-enhancing improvements in agricultural technology

that occurred in the late nineteenth and early-twentieth centuries favored areas with poorer

climate and soil. Since poor climate and soil are re�ected in low initial levels of agricultural

productivity, technological improvements that raise the relative productivity of areas with

poorer climate and soil generate mean reversion in agricultural productivity.

V.C. Baseline Evidence on Structural Transformation

Results using the Regression prediction: Figure A.3 corresponds to Panel B of Figure

II in the paper and displays results for population density, but uses the Regression prediction

7As discussed in Subsection IV.D. of this web appendix, data on farm output per kilometer squared are
unavailable for 1920.
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instead of the Employment Shares prediction. Again we �nd a close correspondence between

the actual population distribution in 2000 and the predicted population distribution based

on structural transformation away from agriculture. Figure A.4 corresponds to Panel C of

Figure II in the paper and displays results for employment density in each industry, but uses

the Regression prediction instead of the Employment Shares prediction. To generate the

predicted employment density in 2000 for each sector using the Regression prediction, we es-

timate regression (10) in the paper for agricultural and non-agricultural employment growth

separately. From the regression�s �tted values, we obtain a prediction for employment growth

in each sector j and MCD m from 1880-2000 (ĝEjm). We next scale up observed 1880 MCD

employment in each sector (Ejm1880) by this predicted employment growth rate (1 + ĝEjm)

to obtain predicted MCD 2000 employment for each sector (Êjm2000 = (1 + ĝEjm)Ejm1880)

and hence predicted MCD 2000 employment density for each sector. As shown in Figure

A.4, the predicted employment density distributions for each sector in 2000 are again close

to the actual employment density distributions.

VI. Further Evidence

VI.A. Robustness

In this subsection, we �rst examine the robustness of the Employment Shares and Regression

predictions in the previous section. We next demonstrate the robustness of the stylized facts

in the previous section across a number of di¤erent samples and speci�cations.

Employment Shares and Regression predictions disaggregating non-agriculture

into manufacturing and services: Figure A.5 displays the shares of agriculture, manufac-

turing and services in aggregate U.S. employment for twenty-year intervals from 1880-2000

using the county sub-periods data discussed in Subsection IV.D. of this web appendix. While

the left-hand panel shows results for our full sample of states (as discussed elsewhere, only

Alaska, Hawaii, Oklahoma, North and South Dakota are excluded), the right-hand panel

shows results for the �A and B�states. In both panels, the share of agriculture in aggregate

U.S. employment declines rapidly until around 1960, after which it converges to less than two

percent of aggregate employment. In contrast, the shares of manufacturing and services in

aggregate employment increase rapidly alongside one another until around 1960, after which

manufacturing�s share declines and services�s continues to rise.

In Figure A.6 in the web appendix, we display the employment-weighted average of
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log population density for each sector from 1880-2000 using the county sub-periods data

discussed in Subsection IV.D. of this web appendix. Employment-weighted average log

population density for each sector j in year t (ejt) is calculated as follows:

ejt =
SX
s=1

Ejst
Est

ln

�
Lst
Hs

�
; (53)

where Ejst denotes employment in sector j in county s at time t; Est and Lst are total

employment and population; Hs is land area.

The sector average population density measure (53) reveals the extent to which em-

ployment in a sector is concentrated in high, medium or low population density counties.

Consistent with other studies such as Desmet and Rossi-Hansberg (2009), Figure A.6 shows

that in recent decades manufacturing has dispersed to lower densities, while services has

continued to concentrate at higher densities. Over a longer time horizon from 1880 until

around 1980, we �nd that employment in both manufacturing and services shifted towards

higher densities, with services displaying the larger change.

Figures A.7 and A.8 correspond to Panel A of Figure II in the paper and display results

using the Employment Shares and Regression predictions for our baseline sample of MCDs in

the A and B states, but they disaggregate non-agriculture into manufacturing and services.

Total employment growth in each MCD can be decomposed into employment growth in

agriculture, manufacturing and services, weighted by the initial shares of employment in

each MCD and sector. Following a similar approach as in the baseline speci�cation in

the paper, our Employment Shares speci�cation predicts MCD population growth using

aggregate employment growth in agriculture. manufacturing and services for the U.S. as a

whole and each MCD�s own initial employment in each sector. We �rst scale up observed

1880 employment in MCD m in sector j (Ejm1880) by the aggregate employment growth rate

for the sector from 1880-2000 (1 + gEj) to obtain predicted MCD 2000 employment in each

sector (Êjm2000). Summing the predicted values for agriculture, manufacturing and services

gives predicted total MCD 2000 employment (Êm2000). We next scale up predicted total

MCD 2000 employment by the observed aggregate ratio of population to employment for

the U.S. as a whole in 2000 (k2000) to obtain predicted MCD 2000 population (L̂m2000). From

predicted MCD 2000 population and observed MCD 1880 population (Lm1880), we obtain
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predicted population growth from 1880-2000 (ĝLm):

Êjm2000 = Ejm1880 (1 + gEj) ; (54)

Êm2000 = ÊAm2000 + ÊMm2000 + ÊSm2000;

L̂m2000 = k2000Êm2000;

ĝLm = ln

 
L̂m2000
Lm1880

!
;

where a hat above a variable denotes a prediction. Note that this measure of predicted

population growth only varies across MCDs because of di¤erences in the 1880 shares of

agriculture, manufacturing and services in MCD employment.

Our Regression prediction for population growth is constructed in a similar way as in

the paper. We regress actual employment growth on the share of agriculture in employment

in 1880, the share of manufacturing in employment in 1880, log population density in 1880,

and interactions between the 1880 shares of agriculture and manufacturing in employment

and 1880 log population density:

� lnLmt = a0 + a1
EAmt�T
Emt�T

+ a2
EMmt�T

Emt�T
+ a3 ln

�
Lmt�T
Hm

�
(55)

+a4

�
EAmt�T
Emt�T

� ln
�
Lmt�T
Hm

��
+ a5

�
EMmt�T

Emt�T
� ln

�
Lmt�T
Hm

��
+ umt;

where Lmt=Hm denotes population density; {a0, a1, a2, a3, a4, a5} are parameters that

we estimate; the main e¤ect of initial population density (a3) allows for the possibility of

mean reversion in services; the coe¢ cient on the agricultural interaction term (a4) allows

the degree of mean reversion to di¤er between agriculture and services; the coe¢ cient on the

manufacturing interaction term (a5) allows the degree of mean reversion to di¤er between

manufacturing and services; umt is a stochastic error.

From the regression�s �tted values, we obtain a prediction for the total employment

growth rate for each MCD from 1880-2000. Our Regression speci�cation scales up ob-

served MCD 1880 total employment (Em1880) by this predicted total employment growth

rate (1+ĝEm) to obtain predicted MCD 2000 total employment (Êm2000 = (1 + ĝEm)Em1880).

Using predicted MCD 2000 total employment, we generate predictions for MCD 2000 pop-

ulation and MCD population growth from 1880-2000 following the same method as for the

Employment Shares speci�cation (54).

As shown in Figures A.7 and A.8 in this web appendix, we �nd that disaggregating

non-agriculture contributes relatively little to the ability of structural transformation to
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explain population growth from 1880-2000. Further insight into this result can be gained

by comparing the Employment Shares predictions with and without disaggregating non-

agriculture. Our baseline Employment Shares prediction in the paper in�ates each MCD�s

non-agricultural employment in 1880 (ENit�T ) by the aggregate employment growth rate for

non-agriculture (1 + gN):

ENit = ENit�T (1 + gN) : (56)

In contrast, our Employment Shares prediction disaggregating non-agriculture into manu-

facturing and services in�ates each MCD�s employment in each of these two industries in

1880 (EMit�T and ESit�T ) by their aggregate employment growth rates (1+ gM and 1+ gS):

ENit = EMit�T (1 + gM) + ESit�T (1 + gS) ;

which can be re-written as:

ENit = ENit�T

�
EMit�T

ENit�T
(1 + gM) +

�
1� EMit�T

ENit�T

�
(1 + gS)

�
: (57)

Comparing (56) and (57), it is evident that the Employment Shares prediction disag-

gregating non-agriculture into manufacturing and services generates di¤erent predictions for

population growth across initial population densities from those of our baseline speci�cation

to the extent that: (a) aggregate employment growth rates di¤er between manufacturing

and services and (b) the share of manufacturing in non-agricultural employment varies with

initial population density.

The similarity of the population growth predictions with and without disaggregating non-

agriculture in Figures A.7 and A.8 re�ects two features of the data. First, the di¤erence in

aggregate employment growth rates from 1880-2000 between agriculture and non-agriculture

(-0.016 versus 0.017) is much larger than between manufacturing and services (0.013 versus

0.018). Second, the variation in the shares of agriculture and non-agriculture in 1880 total

employment across 1880 population density bins (from around 0.8 to 0.1) is much larger than

the variation in the share of manufacturing and services in 1880 non-agricultural employment

(from around 0.2 to 0.4).

In Figure A.9 in this web appendix, we use our county sub-periods dataset to compare

our baseline Employment Shares predictions with those disaggregating manufacturing and

services for the three sub-periods of 1880-1920, 1920-1960 and 1960-2000. Panels A-C dis-

play actual population growth and the two Employment Shares predictions. Panels D-F
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display the di¤erence between the two Employment Shares predictions. In Panels A and

B, the two Employment Shares predictions are almost visually indistinguishable from one

another for 1880-1920 and 1920-1960. In contrast, in Panel C, we �nd more of di¤erence

between the two Employment Shares predictions from 1960-2000. This pattern of results is

consistent with our �ndings in Figures A.5 and A.6 that manufacturing and services exhibit

greater di¤erences in the evolution of their shares of aggregate employment and their aver-

age population densities in recent decades. However, even for 1960-2000, the di¤erence in

aggregate employment growth rates between agriculture and non-agriculture is larger than

that between manufacturing and services, and the variation in the share of manufacturing

in non-agricultural employment across initial population density bins is smaller than the

variation in the share of non-agriculture in total employment. As a result, the di¤erences

between the two Employment Shares predictions for 1960-2000 remain relatively small, as

shown in Panels C and Panel F (and as re�ected in the scale of Panel F).

Predictions controlling for the characteristics of neighboring MCDs: Figure

A.10 corresponds to Panel A of Figure II in the paper, but displays the results of augment-

ing the Regression prediction to include information on the characteristics of the county of

which an MCD is part. We augment the regression (10) in the paper with the 1880 share

of agriculture in employment in the MCD�s county, the 1880 log population density in the

MCD�s county and the interaction between these two variables. As shown in Figure A.10,

the predictions for population growth including county information (labeled �Reg predic-

tion, MCD & county characs�) lie close to those without county information (labeled �Reg

prediction�). Therefore, while the county variables are statistically signi�cant, including in-

formation on the characteristics of the county of which an MCD is part contributes relatively

little to the explanatory power of structural transformation away from agriculture.

Robustness of the stylized facts: Table A.1 and Panels A-F of Figures A.11 and

A.12 report the results of a number of tests of the robustness of the stylized facts discussed

in the paper. Each panel of Figures A.11 and A.12 corresponds to Panel B of Figure I in the

paper and shows the results of estimating the non-parametric speci�cation (8) in the paper

for di¤erent samples.

Table A.1: Column (1) of Table A.1 replicates Column (1) of Table I in the paper by

reporting results for our baseline sample of �A and B�states. Column (2) of Table A.1 reports

results based on aggregating MCDs in the �A and B�states that lie within the boundaries
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of each of our 1880 metropolitan areas. As discussed in the paper, 1880 metropolitan areas

are constructed using a de�nition of a �city�as an MCD with a log population density in

1880 of greater than 6 and aggregating all MCDs within 25 kilometers of the city. When

two or more cities and their surrounding areas overlap, we merge them together. Column

(3) of Table A.1 presents results when we instead drop from the sample all MCDs in the �A

and B�states that lie within the boundaries of an 1880 metropolitan area as de�ned above.

Column (4) of Table A.1 reports results when we drop from the sample all MCDs in the �A

and B�states with centroids within 100 kilometers of the centroid of a 2000 Metropolitan

Statistical Area (MSA). Column (5) of Table A.1 presents results when we drop all MCDs

in the �A and B� states with centroids within 100 kilometers of the centroid of an 1880

metropolitan area as de�ned above. Column (6) of Table A.1 displays results when we drop

all MCDs in the �A and B�states that experience a decline in non-agricultural employment

between 1880 and 2000. Across each of the columns in Table A.1, we �nd the same pattern

of stylized facts as discussed in the paper.

Figure A.11: Panel A reports results for the sample of MCDs in the �A�states. Panel B

presents results for the counties sample discussed in Subsection IV.C. of this web appendix.

Panel C displays results for the subset of the counties sample in the �A and B�states. Panel

D reports results for the hybrid sample of MCDs and counties discussed in Subsection IV.C.

of this web appendix. Panel E presents results for the subset of MCDs in the �A and B�

states that were part of British colonial claims in 1775. Panel F displays results aggregating

MCDs in the �A and B� states that lie within the boundaries of each 2000 Metropolitan

Statistical Area (MSA).

Figure A.12: Panel A reports results based on aggregating MCDs in the �A and B�

states that lie within the boundaries of an 1880 metropolitan area. As discussed in the

paper, 1880 metropolitan areas are constructed using a de�nition of a �city� as an MCD

with a log population density in 1880 of greater than six and aggregating all MCDs within

25 kilometers of the city. When two or more cities and their surrounding areas overlap, we

merge them together. Panel B presents results when we drop from the sample all MCDs

in the �A and B�states that lie within the boundaries of a 2000 Metropolitan Statistical

Area (MSA). Panel C displays results when we drop from the sample all MCDs in the �A

and B�states that lie within the boundaries of an 1880 metropolitan area as de�ned above.

Panel D reports results when we drop from the sample all MCDs in the �A and B�states
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with centroids within 100 kilometers of the centroid of a 2000 MSA. Panel E presents results

when we drop from the sample all MCDs in the �A and B�states with centroids within 100

kilometers of the centroid of an 1880 metropolitan area as de�ned above. Panel F displays

results when we drop all MCDs that experience a decline in non-agricultural employment

between 1880 and 2000 from our baseline sample for the �A and B�states.

Across each of the speci�cations shown in Panels A-F of Figures A.11 and A.12, we �nd

the same pattern of results as shown in Panel of B of Figure I in the paper. The pattern

of an initially decreasing, later increasing and �nally roughly constant relationship between

population growth and initial population density is therefore robust to the consideration of

each of these alternative samples and speci�cations.

VI.B. Timing of Structural Transformation

Figure A.13: This �gure shows results using the county sub-periods data discussed in

Subsection IV.D. of this web appendix for 1880-1920, 1920-1960 and 1960-2000. In Panels

A-C of Figure A.13, we display mean population growth for each sub-period across initial log

population density bins. In each panel, we show both mean actual population growth and

mean predicted population growth based on the Employment Shares prediction. In Panels

D-F of Figure A.13, we display the mean share of agriculture in employment for 1880, 1920

and 1960 respectively across initial log population density bins. Initial log population density

bins are constructed in the same way as in Panels A and B of Figure I in the paper. To

highlight the contrast between the sub-periods, we focus in Figure A.13 on initial population

densities between 0 and 6 log points, but �nd a similar pattern of results across the full range

of initial population densities.

In Panels A-B of Figure A.13, the increasing relationship between population growth

and initial population density over a range of intermediate densities is strongly apparent

for the �rst two sub-periods. Furthermore, this range of intermediate densities is the same

range over which there is a sharp decline in the initial share of agriculture in employment in

1880 and 1920 in Panels D-E. As a result, the Employment Shares prediction captures the

increasing relationship between population growth and initial population density observed at

intermediate densities, con�rming the explanatory power of structural transformation away

from agriculture in predicting population growth.

In contrast, by 1960 agriculture is a small share of employment across all initial log

37



population density bins in Panel F, so that the decline in the share of agriculture over a

range intermediate densities is much more muted. This dominance of non-agriculture across

the full range of initial population densities is accompanied by a largely constant rate of

actual population growth in Panel C, which is well captured by the largely constant rate of

predicted population growth based on structural transformation away from agriculture.

Figure A.14: This �gure corresponds to Panel D of Figure III in the paper, but shows

results using the Regression prediction instead of the Employment Shares prediction. Both

�gures are based on the county sub-periods data discussed in Subsection IV.D. of this web

appendix. For each Census region and twenty-year period, Figure A.14 displays the di¤erence

in mean population growth for the ranges of 3-5 minus 1-3 log points of initial population

density for both actual population growth (y-axis) and predicted population growth based

on the Regression prediction (x-axis). Points are labeled according to Census region codes:

MW (Mid-West), NE (North-East), S (South) and W (West). Washington D.C. is assigned

to the South. Points are also labeled according to the �nal year of the interval over which

population growth is computed, so that 1960 corresponds to the sub-period 1940-1960.

As for the Employment Shares prediction in the paper, we observe a strong positive re-

lationship between the actual increase in population growth at intermediate densities and

the predicted increase based on structural transformation away from agriculture. Regressing

the actual increase in population growth between the two ranges (3-5 minus 1-3) on the

predicted increase, we �nd a positive and statistically signi�cant coe¢ cient (standard error)

of 0.619 (0.162), as shown in the regression line in Figure A.14. Augmenting the regres-

sion with region and sub-period �xed e¤ects, we continue to �nd a positive and signi�cant

relationship, with a coe¢ cient (standard error) of 1.167 (0.163).

VI.C. Alternative Potential Explanations

Table A.3: In Table IV in the paper, we report heteroscedasticity robust standard errors

adjusted for clustering by county, which allows the standard errors to be correlated across

MCDs within counties without imposing prior structure on the pattern of this correlation. In

Table A.3, we report the results of a robustness test in which we instead use the alternative

approach to allowing for spatial correlation in the regression errors of Bester et al. (2011).

Both procedures result in similar standard errors, so that all statements about statistical

signi�cance are robust to the use of either approach.
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VII. Conclusion

No additional results required.

VIII. Brazilian Evidence

VIII.A. Brazilian Data

Our Brazilian data mostly come from Instituto de Pesquisa Econômica Aplicada (IPEA),

and Brazilian Census micro data compiled by Instituto Brasileiro de Geogra�a e Estatística

(IBGE). Like the U.S., Brazil is divided into states, and just as U.S. states are divided

into counties, Brazilian states are divided into municipalities. Since municipality boundaries

have changed over time, the Instituto de Pesquisa Econômica Aplicada (IPEA) has created

�Áreas Mínimas Comparáveis� (AMCs), geographic units that are more stable over time.

The 5,507 municipalities that existed in 1997 were pooled into 3,659 AMCs, which allow us

to consistently analyze data from 1970-2000.8

Data on AMC employment and population in both 1970 and 2000 comes from the Brazil-

ian Census micro data (Brazil Census 1970, 2000). Data on AMC land area in 2000 comes

from IPEA (2008). Although we could analyze Brazilian data before 1970, this would entail

considerable further aggregation of municipalities, which would make it harder to distinguish

urban from rural areas. Since agriculture�s share in employment in the average AMC declined

from 71 percent to 43 percent from 1970-2000, and its share in overall employment fell from

46 percent to 20 percent, our sample period contains considerable structural transformation.

The average Brazilian AMC spans 2,323km2 and had a population of 25,817 in 1970 and

46,421 in 2000. While AMCs are on average larger than the units that we analyze in our U.S.

sample, the di¤erence is due in part to the fact that the interior regions of Brazil have larger

and more sparsely populated AMCs. Therefore, while our baseline sample uses all of Brazil,

we also demonstrate the robustness of our results to using a subsample that includes the

Northeast, Southeast and South regions in Brazil only. AMCs in these regions are relatively

small, which permits a sharper distinction between rural and urban areas, and it is less likely

that these regions were not fully settled in 1970. The average AMC in this subsample spans

923km2 and had a population of 26,013 in 1970 and 44,125 in 2000. The three regions in

8New municipalities were created after 2000, but the 1997 municipalities were used in the 2000 Census,
the latest Census that we analyze in this web appendix.
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this subsample cover about 90 percent of Brazil�s AMCs, 36 percent of its land area and 91

percent of its population in 1970.

While obtaining population data is straightforward, calculating sectoral employment in-

volved some choices in the classi�cation of workers into agriculture, manufacturing, and

services. In particular, in the U.S. the logging sector is not considered part of agriculture,

but in Brazil it proved more di¢ cult to consistently separate logging from the rest of the

agricultural sector for both 1970 and 2000. We therefore pooled the Brazilian logging indus-

try with its agricultural sector. Otherwise the de�nitions of �agriculture,��manufacturing�

and �services�for Brazil closely follow those used for the U.S.. Using 1970 sector de�nitions,

we classi�ed people employed in sectors 111-222 as agricultural workers, those in sectors

300-352 as industrial workers, and those in sectors 411-928 as service workers. In 2000, agri-

cultural workers were those with sector classi�cations 01101-05002, manufacturing workers

were those with sector classi�cations 10000-37000 or 45001-45999, and services workers were

those with sector classi�cations 40010-41000 or 50010-93092.

In some of the robustness checks we also use a set of state �xed e¤ects. To generate these

�xed e¤ects we use the 2000 classi�cation of 27 Brazilian states, since some Brazilian state

boundaries did change after 1970. In particular, Mato Grosso do Sul was separated from

Mato Grosso in the 1970s; Guanabara and Rio de Janeiro merged in 1975 under the name

of Rio de Janeiro; and Tocantins was formed in 1988 out of the northern part of Goiás.

In addition to state �xed e¤ects, some of our speci�cations also use a range of geographic

controls. These include indicators for mineral deposits of oil, nickel, manganese, iron, gold,

copper, cobalt, and aluminum (bauxite). We also construct an indicator for whether an AMC

borders on the ocean, or whether its centroid lies within 50 kilometers of a river. Finally,

we construct a variable indicating whether an AMC�s centroid is covered with tropical or

subtropical moist broadleaf forest, or for if it is situated in the Amazonas area. The river

shape�le is from ArcView Database Access (ESRI 1999). The broadleaf forest, minerals, and

oil and gas data are from the Global GIS DVD (GIS 2003).

VIII.B. Brazilian Results

Table A.4 and Figure A.15: This table and �gure report the results of our robustness test

using the Brazilian data. In Column (1) of Table A.4 and in Figure A.15, we report results

for all Brazilian AMCs. Panel A of the table and �gure show that the standard deviation of
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log population density across Brazilian AMCs increased from 1970-2000, con�rming our �rst

stylized fact. Panel B of the table and �gure show that low density areas and high density

areas grew faster than areas of intermediate density. Therefore the pattern of an initially

decreasing, later increasing and �nally roughly constant relationship between population

growth and initial population density, characterized in Stylized Fact 2, also holds for Brazil.

Panel C in Table A.4 and Figure A.15 show that the increasing segment of the population

growth relationship is located in the same range of initial population densities where a sharp

decline in agriculture�s share of employment is observed, as in the U.S. (Stylized Fact 3).

Panel D in the same table and �gure also con�rm that agricultural employment has a lower

standard deviation than non-agricultural employment (Stylized Fact 4). Finally, the last

two stylized facts � that agricultural employment is mean reverting and non-agricultural

employment is largely uncorrelated with initial density �are also con�rmed for Brazil, as

shown in the �nal two panels of the table and �gure.9

While our baseline sample for Brazil includes all Brazilian AMCs, in Column (2) of Table

A.4 we report results for the subsample of AMCs in the Northeast, Southeast and South

regions of Brazil. As discussed in the previous subsection, AMCs in this subsample are

somewhat smaller in geographical area, which facilitates a sharper distinction between rural

and urban areas, and it is less likely that these regions were not fully settled in 1970. As

shown in Column (2) of Table A.4, all of our stylized facts are con�rmed for this subsample

of AMCs.

Figure A.16: This �gure corresponds to Panel A of Figure II in the paper, but displays

actual and predicted population growth for Brazil instead of the U.S.. The Employment

Shares and Regression predictions for Brazil are constructed in the same way as discussed

in Subsection V.C of the paper. As for the U.S., we �nd that structural transformation

away from agriculture has substantial explanatory power for population growth in Brazil.

Regressing mean actual population growth on mean predicted population growth across the

initial log population density bins shown in Figure A.16, we �nd a coe¢ cient (standard

error) of 0.498 (0.072) and a regression R2 of 0.40 using the Employment Shares prediction.

Results using the Regression prediction are similar: we �nd a coe¢ cient (standard error) of

0.596 (0.061) and a regression R2 of 0.63.

9For Brazil, to ensure a su¢ cient sample size, we construct the non-agricultural subsample using AMCs
that have an agricultural employment share in 1970 of less than less than 0.4 (instead of less than 0.2 for the
U.S.). Nonetheless, if we also use a threshold of less than 0.2 for Brazil, we continue to �nd no statistically
signi�cant relationship between non-agricultural employment growth and initial population density.
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Table A.5: This table corresponds to Table IV in the paper, but reports the results

of regressions of actual on predicted population growth for Brazil rather than for the U.S..

Panel A uses the Employment Shares prediction, which is based on aggregate reallocation

from agriculture to non-agriculture and each MCD�s initial employment in each sector. Panel

B uses the Regression prediction, which allows for di¤erent degrees of mean reversion in

agriculture and non-agriculture.

In Column (1), we report the results of a regression of actual on predicted population

growth with no controls. In Column (2), we augment the speci�cation from Column (1)

with controls for local di¤erences in physical geography and natural endowments, including

dummy variables for (a) the presence of oil, nickel, manganese, iron, gold, copper, cobalt,

and aluminum (bauxite), (b) whether the AMC borders the ocean or lies within 50 kilo-

meters of a river, (c) whether the AMC has a centroid covered with tropical or subtropical

moist broadleaf forest or is located in the Amazonas area. In Column (3), we augment the

speci�cation from Column (1) with state �xed e¤ects. In Column (4), we augment the speci-

�cation from Column (1) with a full set of �xed e¤ects for initial log population density bins.

In Column (5), we re-estimate Column (1) for the sub-sample of AMCs in the North-East,

South-east and South regions of Brazil. In Column (6), we simultaneously include all of the

controls from Columns (2)-(4). In Column (7) we report results for the sub-sample of AMCs

in the North-East, South-east and South regions of Brazil, simultaneously including all of

the controls from Columns (2)-(4). Across each of these speci�cations and in both panels,

we continue to �nd statistically signi�cant e¤ects of structural transformation away from

agriculture.

In summary, we �nd a strikingly similar pattern of results for Brazil and the U.S.. While

there are many di¤erences between the U.S. from 1880-2000 and Brazil from 1970-2000, both

are characterized by substantial structural transformation away from agriculture, and hence

we would expect the stylized facts to apply. The striking similarity of the results in these two

di¤erent contexts provides strong evidence that our �ndings are indeed capturing structural

transformation away from agriculture and are not driven by idiosyncratic features of the

data or institutional environment for the U.S..
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Table A.1: U.S. stylized facts, further robustness 
 

 (1) 
MCDs 

Baseline: 
A and B 

states 

(2) 
 

MCDs 
Pooling 1880 

cities 

(3) 
 

MCDs 
Excluding 
1880 cities 

(4) 
MCDs 

Excluding 
2000 MSAs 

+100 km 

(5) 
MCDs 

Excluding 
1880 city 
+100 km 

(6) 
MCDs 

No shrinking 
non-ag 

employment 
Panel A Standard deviation of log population density in 1880 (σ1) 0.967 0.927 0.927 0.930 0.940 0.957 
 Standard deviation of log population density in 2000 (σ2) 1.556 1.457 1.457 1.234 1.402 1.526 
 H0: σ1= σ2, vs. H1: σ1< σ2, p-value 0.000 0.000 0.000 0.000 0.000 0.000 
 Stylized Fact 1: Distribution of log population density across geographic units became 

more dispersed from 1880-2000 (population became more concentrated) 
Yes Yes Yes Yes Yes Yes 

Panel B 
 
Mean population growth at log population density 0 (βg(0)) 0.013 0.013 0.013 0.013 0.012 0.013 

 Mean population growth at log population density 2 (βg(2)) 0.001 0.001 0.001 0.000 0.001 0.002 
 Mean population growth at log population density 4 (βg(4)) 0.009 0.008 0.008 0.005 0.007 0.009 
 Mean population growth at log population density larger 4 (βg(>4)) 0.010 0.009 0.009 0.005 0.009 0.010 
 H0: βg(0)= βg(2), H1: βg(0)> βg(2), p-value 0.000 0.000 0.000 0.000 0.000 0.000 
 H0: βg(2)= βg(4), H1: βg(2)< βg(4), p-value 0.000 0.000 0.000 0.000 0.000 0.000 
 H0: βg(4)= βg(>4), H1: βg(>4) ≠ βg(4), p-value 0.489 0.470 0.470 0.739 0.248 0.666 
 Stylized Fact 2: Increasing relationship between population growth from 1880-2000 and 

log population density in 1880 at intermediate densities 
Yes Yes Yes Yes Yes Yes 

 
Panel C 

 
Percent of agricultural in total employment at log population density 2 (βsa(2)) 0.767 0.769 0.769 0.771 0.775 0.771 

 Percent of agricultural in total employment at log population density 4 (βsa(4)) 0.228 0.220 0.220 0.213 0.219 0.230 
 H0: βsa(2)= βsa(4), H1: βsa(2)> βsa(4), p-value 0.000 0.000 0.000 0.000 0.000 0.000 
 Stylized Fact 3: Share of agriculture in employment falls in the range where population 

density distribution in 1880 is positively correlated with population growth 1880-2000 
Yes Yes Yes Yes Yes Yes 

 
Panel D 

 
Standard deviation of agricultural employment in 1880 (σ1a) 0.820 0.820 0.820 0.896 0.901 0.802 

 Standard deviation of non-agricultural employment in 1880 (σ1na) 1.520 1.437 1.437 1.431 1.457 1.518 
 H0: σ1a= σ1na, vs. H1: σ1a< σ1na, p-value 0.000 0.000 0.000 0.000 0.000 0.000 
 Standard deviation of agricultural employment in 2000 (σ2a) 0.858 0.851 0.851 0.868 0.881 0.845 
 Standard deviation of non-agricultural employment in 2000 (σ2na) 1.623 1.509 1.509 1.293 1.468 1.591 
 H0: σ2a= σ2na, vs. H1: σ2a< σ2na, p-value 0.000 0.000 0.000 0.000 0.000 0.000 
 Stylized Fact 4: Standard deviation of non-agricultural employment is larger than 

standard deviation of agricultural employment in both years 
Yes Yes Yes Yes Yes Yes 

 
Panel E 

 
Regress agricultural employment growth on log population density and intercept in 
subsample of units with agricultural employment share > 0.8 in 1880, report slope 
coefficient (βa) -0.0060 -0.0061 -0.0061 -0.0060 -0.0061 -0.0060 

 H0: βa=0, H1: βa≠0, p-value 0.000 0.000 0.000 0.000 0.000 0.000 
 Stylized Fact 5: Agricultural employment growth is negatively correlated with 

population density 
Yes Yes Yes Yes Yes Yes 

 
Panel F 

 
Regress non agricultural employment growth on log population density and intercept in 
subsample of units with non-agricultural employment share < 0.2 in 1880, report slope 
coefficient (βna) -0.0002 0.0001 0.0001 -0.0005 -0.0018 -0.0008 

 H0: βna= βa, H1: βna > βa, p-value 0.000 0.000 0.000 0.000 0.000 0.000 
 Stylized Fact 6: Stronger mean reversion in agricultural employment than in non-

agricultural employment 
Yes Yes Yes Yes Yes Yes 

 

Number of observations 10,864 10,173 10,133 6,386 5,798 10,586 
Note: This table reports robustness tests of our 6 stylized facts using US MCD data. Panels B, C, E, and F report tests based on regressions using robust standard errors clustered by county. See the text of the paper and this 
web appendix for further discussion of the construction of the data. 
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Table A.2: Correlation of farm output per kilometer squared over time 

(1) (2) (3) (4) (5) 
log 1900 

farm output 
per km2 

log 1940 
farm output 

per km2 

log 1960 
farm output 

per km2 

log 1980 
farm output 

per km2 

log 2000 
farm output 

per km2 
Panel A:  Full sample of counties 

log 1880 farm  0.561*** 0.346*** 0.317*** 0.226*** 0.196*** 
output per km2 (0.0300) (0.0231) (0.0241) (0.0299) (0.0262) 

log 1900 farm. 0.617*** 0.555*** 0.438*** 0.419*** 
output per km2 (0.0233) (0.0273) (0.0378) (0.0344) 

log 1940 farm 0.905*** 0.823*** 0.846*** 
output per km2 (0.0182) (0.0270) (0.0298) 

log 1960 farm. 0.922*** 0.932*** 
output per km2 (0.0171) (0.0228) 

log 1980 farm 1.028*** 
output per km2 (0.0156) 
      
Panel B:  Counties in the A and B states 

log 1880 farm 0.749*** 0.704*** 0.724*** 0.626*** 0.520*** 
output per km2 (0.0441) (0.0482) (0.0504) (0.0672) (0.0593) 
      
log 1900 farm 0.972*** 1.001*** 0.923*** 0.806*** 
output per km2 (0.0368) (0.0472) (0.0742) (0.0560) 
      
log 1940 farm 0.973*** 0.902*** 0.875*** 
output per km2 (0.0335) (0.0473) (0.0438) 
      
log 1960 farm 0.923*** 0.879*** 
output per km2 (0.0338) (0.0421) 
      
log 1980 farm 0.998*** 
output per km2 (0.0319) 

Note:  Each cell reports the estimated coefficient from a regression of log nominal farm output per kilometer squared (measured in the year denoted in the 
column headings) on lagged log nominal farm output per kilometer squared (measured in the year denoted in the row headings).  Each cell corresponds to a 
separate regression using observations on counties.  Each specification includes state fixed effects, which control, for example, for state-specific changes in 
nominal prices for the relevant pair of years. The table uses our county sub-periods data. Robust standard errors are in parentheses. 
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Table A.3: Explanatory power of the Employment Shares and Regression predictions (alternative standard errors) 
 

Actual population growth      

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

   As (1) 
with 

geographic 
controls 

As (1) 
with 

demographic 
controls 

As (1) 
with distance 

to 1947 
highway 

As (1) 
with distance 

to 1898 
railroad 

As (1) 
with distance 

to 1880 
city 

As (1) 
with manufacturing 

share in non-
agriculture 

As (1) 
with 1880 
density bin 

controls 

As (1) 
with county 

fixed 
effects 

 
All controls 

used in 
(2) to (9) 

 

Panel A : Employment Shares prediction        

Predicted 
Population 
Growth 

          

0.449*** 0.334*** 0.262*** 0.401*** 0.400*** 0.413*** 0.418*** 0.324*** 0.271*** 0.233*** 
(0.031) (0.0269) (0.026) (0.029) (0.029) (0.027) (0.028) (0.030) (0.016) (0.019) 

           
Observations 10,864 10,864 10,864 10,864 10,864 10,864 10,864 10,864 10,864 10,864 
R-squared 0.09 0.18 0.14 0.14 0.14 0.09 0.10 0.15 0.62 0.67 

           
Panel B : Regression prediction         

Predicted 
Population 
Growth 

          

0.978*** 0.718*** 0.581*** 0.905*** 0.903*** 0.892*** 0.913*** 0.645*** 0.545*** 0.362*** 
(0.059) (0.056) (0.070) (0.057) (0.057) (0.054) (0.058) (0.066) (0.041) (0.045) 

           
Observations 10,864 10,864 10,864 10,864 10,864 10,864 10,864 10,864 10,864 10,864 
R-squared 0.10 0.18 0.15 0.15 0.16 0.20 0.10 0.15 0.62 0.66 

Note: All regressions use MCD data for our baseline sample of A and B states.  Observations are a cross-section of MCDs from 1880-2000.  In all specifications, the dependent variable is actual population growth from 1880-
2000.  Panel A uses predicted population growth from the Employment Shares prediction.  Panel B uses predicted population growth from the Regression prediction.  In Column (2), the geographical controls are measures of 
proximity to rivers, lakes, coastlines and mineral resources.  In Column (3), the demographic controls are the share of the population that is white, the share of the population born outside the state (as a measure of national 
and international migration), the share of the population aged less than six (as a measure of fertility), and the share of the population aged 14-18 in education (as a measure of educational attainment).  Column (4) includes 
distance from the centroid of each MCD to the closest interstate highway in the 1947 plan.  Column (5) includes distance from the centroid of each MCD to the closest railroad in the 1898 railroad network.  Column (6) 
includes distance from the centroid of each MCD to the centroid of the closest 2000 MSA.  In Column (7), we include the 1880 share of manufacturing in non-agricultural employment.  Column (8) includes 1880 population 
density bin fixed effects.  Column (9) includes county fixed effects.  In Column (10), we include all controls from Columns (2)-(9).  In Columns (4)-(6) and (10), we use log(1+distance to transportation system and/or city). 
Robust standard errors corrected for spatial correlation using the methodology of Bester, Conley and Hansen (2009). See the text of the paper and this web appendix for further discussion of the construction of the data. 
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Table A.4: Brazil stylized facts and their robustness 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) (2) 

 

All of 
Brazil 

(AMCs) 

Brazil  
sub-sample 
(see table 
footnote) 

Panel A Standard deviation of log population density in 1970 (σ1) 1.222 1.009 
 Standard deviation of log population density in 2000 (σ2) 1.323 1.197 
 H0: σ1= σ2, vs. H1: σ1< σ2, p-value <0.001 <0.001 
 Stylized Fact 1: Distribution of log population density across geographic units became more 

dispersed from 1970-2000 (population became more concentrated) 
Yes Yes 

Panel B 
 
Mean population growth at log population density 0 (βg(0)) 0.024 0.015 

 Mean population growth at log population density 4 (βg(4)) 0.008 0.008 
 Mean population growth at log population density 6 (βg(6)) 0.021 0.021 
 Mean population growth at log population density larger 6 ( βg(>6)) 0.032 0.032 
 H0: βg(0)= βg(4), H1: βg(0)> βg(4), p-value <0.001 <0.001 
 H0: βg(4)= βg(6), H1: βg(4)< βg(6), p-value <0.001 <0.001 
 H0: βg(6)= βg(>6), H1: βg(>6) ≠ βg(6), p-value 0.016 0.016 
 Stylized Fact 2: Upward and downward sloping relationship between population growth from 1970-

2000 and log population density in 1970 
Yes Yes 

 
Panel C 

 
Percent of agricultural in total employment in 1970 at log population density 4 (βsa(4)) 0.671 0.671 

 Percent of agricultural in total employment in 1970 at log population density 6 (βsa(6)) 0.168 0.168 
 H0: βsa(4)= βsa(6), H1: βsa(4)> βsa(6), p-value <0.001 <0.001 
 Stylized Fact 3: Share of agriculture in employment falls in the range where population density 

distribution in 1970 is positively correlated with population growth 1970-2000 
Yes Yes 

 
Panel D 

 
Standard deviation of agricultural employment in 1970 (σ1a) 0.893 0.887 

 Standard deviation of non-agricultural employment in 1970 (σ1na) 1.416 1.429 
 H0: σ1a= σ1na, vs. H1: σ1a< σ1na, p-value <0.001 <0.001 
 Standard deviation of agricultural employment in 2000 (σ2a) 1.018 0.995 
 Standard deviation of non-agricultural employment in 2000 (σ2na) 1.375 1.364 
 H0: σ2a= σ2na, vs. H1: σ2a< σ2na, p-value <0.001 <0.001 
 Stylized Fact 4: Standard deviation of non-agricultural employment is larger than standard deviation 

of agricultural employment in both years 
Yes Yes 

 
Panel E 

 
Regress agricultural employment growth on log population density and intercept in subsample of 
units with agricultural employment share > 0.8 in 1970, report slope coefficient (βa) -0.004 -0.004 

 H0: βa = 0, H1: βa ≠ 0, p-value <0.001 <0.001 
 Stylized Fact 5: Agricultural employment growth is negatively correlated with population density Yes Yes 
 
Panel F 

 
Regress non agricultural employment growth on log population density and intercept in subsample 
of units with agricultural employment share < 0.4 in 1970, report slope coefficient (βna) 0.001 0.001 

 H0: βna= βa, H1: βna > βa, p-value 0.000 0.000 
 Stylized Fact 6: Stronger mean reversion in agricultural employment than in non-agricultural 

employment Yes Yes 
 

Observations 3,657 3,293 
Note: This table reports robustness tests of our 6 stylized facts using data on Brazilian Áreas Mínimas Comparáveis (AMCs).  Panels B, C, E, 
and F report tests based on regressions using robust standard errors.  Column (2) uses only AMCs in the Northeast, Southeast, and South 
regions of Brazil. See the text of the paper and this web appendix for further discussion of the construction of the data. 
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Table A.5: Explanatory power of the Employment Shares and Regression predictions for Brazil 

 
Actual population growth       

 (1) (2) (3) (4) (5) (6) (7) 

 

 As (1) with 
geographic 
controls1 

As (1) with state 
fixed effects 

As (1) with log 
pop density 

bin fixed 
effects 

As (1) in the 
AMC sub 

sample 

As (1) with all 
controls from 

(2)-(4) 

As (5) with  
all controls from 

(2)-(4) 

Panel A : Employment Shares prediction    
 

Predicted 
Population 
Growth 

       

0.717*** 0.849*** 0.929*** 0.674*** 0.735*** 0.693*** 0.661*** 
(0.128) (0.099) (0.131) (0.138) (0.150) (0.089) (0.095) 

       
 

Observations 3,657 3,657 3,657 3,657 3,291 3,657 3,291 
R-squared 0.15 0.38 0.34 0.29 0.18 0.50 0.48 

       
 

Panel B : Regression prediction     
 

Predicted 
Population 
Growth 

      
 

0.813*** 0.871*** 0.945*** 0.678*** 0.735*** 0.691*** 0.657*** 
(0.122) (0.093) (0.124) (0.126) (0.145) (0.079) (0.084) 

       
 

Observations 3,657 3,657 3,657 3,657 3,291 3,657 3,291 
R-squared 0.21 0.41 0.36 0.30 0.20 0.51 0.48 

Note:  Observations are a cross-section of Brazilian AMCs from 1970-2000.  In all specifications, the dependent variable is actual population growth.  Panel A 
uses predicted population growth from the Employment Shares prediction.  Panel B uses predicted population growth from the Regression prediction.  In 
Columns (2), (6) and (7), the geographical controls are indicators for mineral deposits of oil, nickel, manganese, iron, gold, copper, cobalt, and aluminum 
(bauxite); an indicator for whether an AMC borders on the ocean or whether its centroid lies within 50 kilometers of a river; and an indicator for whether an 
AMC’s centroid is covered with tropical or subtropical moist broadleaf forest or it is situated in the Amazonas area.  The AMC sub-sample in Columns (5) and 
(7) includes AMCs in the Northeast, Southeast and South regions of Brazil only.  Robust standard errors are shown in parentheses.  See the text of the paper 
and this web appendix for further discussion of the construction of the data. 
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Appendix Table A.6: U.S. MCD match quality by state 

 
  

1880 
MCDs 

 
1940 

MCDs 

 
2000 

MCDs 

Final 
(pooled) 
MCDs 

 
Final/ 
1880 

 
Final/ 
2000 

 
Class-

ification 

Aggreg-
ation 

Step 1 

Aggreg-
ation 

Step 2 

Aggreg-
ation 

Step 3 
           
Arkansas 887 1482 1330 806 0.91 0.61 C 0 0 524 
California 419 504 387 133 0.32 0.34 C 0 69 185 
Connecticut 167 169 169 167 1.00 0.99 A 0 0 2 
Delaware 33 31 27 21 0.64 0.78 C 0 0 6 
Washington DC 1 1 1 1 1.00 1.00 A 0 0 0 
Georgia 1232 1648 577 505 0.41 0.88 C 0 0 72 
Illinois 1583 1638 1708 1446 0.91 0.85 B 0 104 158 
Indiana 1011 1015 1009 997 0.99 0.99 A 0 0 12 
Iowa 1545 1676 1654 1509 0.98 0.91 A 7 0 145 
Kansas 1066 1686 1492 982 0.92 0.66 C 43 135 375 
Maine 574 712 530 487 0.85 0.92 B 1 0 43 
Maryland 236 302 293 212 0.90 0.72 B 0 15 66 
Massachusetts 344 349 351 337 0.98 0.96 A 0 0 14 
Michigan 1110 1428 1425 1044 0.94 0.73 B 104 0 381 
Minnesota 1220 2911 2506 897 0.74 0.36 C 269 485 1124 
Missouri 1134 1303 1379 1099 0.97 0.80 B 0 28 252 
Nebraska 654 1506 1198 526 0.80 0.44 C 36 328 344 
New Hampshire 245 249 258 236 0.96 0.91 A 1 0 22 
New Jersey 265 563 549 254 0.96 0.46 C 17 0 295 
New York 969 1006 986 913 0.94 0.93 A 27 21 48 
North Carolina 871 1027 1053 834 0.96 0.79 B 2 0 219 
Ohio 1373 1445 1548 1320 0.96 0.85 B 31 44 184 
Pennsylvania 1995 2567 2469 1671 0.84 0.68 C 110 167 631 
Rhode Island 36 39 39 36 1.00 0.92 A 0 0 3 
South Carolina 411 574 296 246 0.60 0.83 C 0 0 50 
Utah 219 422 90 55 0.25 0.61 C 0 20 15 
Vermont 248 252 251 243 0.98 0.97 A 4 0 8 
Virginia 434 473 544 362 0.83 0.67 C 0 17 165 
West Virginia 326 352 240 208 0.64 0.87 C 0 0 32 
Wisconsin 952 1808 1646 902 0.95 0.55 C 255 0 744 
 
Note: This table shows the number of MCDs in each state in each of the three census years (1880, 1940, and 2000). It also reports the number of observations 
in the final dataset, and ratios of this number to 1880 MCDs and to 2000 MCDs. The table reports the classification of the match quality in each state (the 
classification is A if both ratios are ≥ 0.9, B if both ratios are ≥ 0.7 but one or more of them is less than 0.9, and C otherwise). The baseline sample we use 
consists of the A and B states. This sample and the other samples used in robustness checks are described in the paper and this web appendix. The table also 
reports the number of MCDs aggregated in each step of the data creation process. In the first step we merged together 2000 MCDs with identical state, county 
and names; in the second step we pooled together MCDs in 1880 counties when we could not identify the location of some of the MCDs; and in the third step 
we pooled together 2000 MCDs that were not matched to data from 1880 or 1940 to the nearest 2000 MCD that was matched and lay within the same 1880 
county. For a detailed discussion of the matching and aggregation process, see this web appendix. Five states are excluded from our analysis (Alaska, Hawaii, 
Oklahoma, North Dakota and South Dakota), because they had not attained statehood in 1880 and are either not included in the 1880 census or did not have 
stable county boundaries at that time. 
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Appendix Table A.7: U.S. geographical sources by state 
 

State   Map sources 
Alabama:  No sufficient 1880 map found. Only county data available. 
Alaska:  Not included in the 1880 census and so excluded from the dataset. 
Arizona:  In 1880 precincts were not separately returned by the enumerators. Only county data available. 
Arkansas:  United States Library of Congress map collection, Rand McNally and Co: "Arkansas Administrative Railroad and 

Township Map", 1898. 
California:  National Archives and Records Administration (NARA), Washington DC, Microfilm publication A3378: "Enumeration 

District Maps of the Twelfth trough Sixteenth Censuses of the United States, 1900 - 1940", County Maps on Microfilm 
Roll numbers 4 to 6. Additionally (for the counties of Colusa, Napa, Solano and Ventura): Blum, George W., California 
Book Map, Compiled and Published by Geo. W. Blum, 330 Pine St., S.F. Edward Denny and Co., Agents. Copyrighted 
1895 By Geo. W. Blum, San Francisco, Cal., available at David Rumsey Map Collection (www.davidrumsey.com) 

Colorado:  In 1880 precincts were not separately returned by the enumerators. Only county data available. 
Connecticut:  Mitchell, Samuel A. "Township map of the States of Massachusetts, Connecticut and Rhode Island, Drawn and 

engraved by W.H. Gamble, Philadelphia. Copyright 1887 by Wm. M. Bradley and Bro. (1890)", Publisher: John Y. 
Huber and Co, available at David Rumsey Map Collection (www.davidrumsey.com). 

Delaware:  Library of Congress, "The Township Map of Delaware", Mc Connell School supply company, copyright McConnell 
(Philadelphia), 1990. 

Florida:  No sufficient 1880 map found. Only county data available. 
Georgia:  National Archives and Records Administration (NARA), Washington DC, Microfilm publication A3378: "Enumeration 

District Maps of the Twelfth trough Sixteenth Censuses of the United States, 1900 - 1940", County Maps on Microfilm 
Roll numbers 11 and 12. 

Hawaii:  Not included in the 1880 census and so excluded from the dataset. 
Idaho:  In 1880 precincts were not separately returned by the enumerators. Only county data. 
Illinois:  Library of Congress, Rufus Blanchard (cartographer), "Blanchard's township map Illinois", 1867. Additionally Mitchell, 

Samuel Augustus: "County and Township map of the State of Illinois", (1880) available at David Rumsey Map 
Collection (www.davidrumsey.com). 

Indiana:  Representative Districts Indiana. Published by Baskin, Forster and Co. Lakeside Building Chicago, Ills. 1876. Engraved 
and Printed by Chas. Shober and Co. Props. of Chicago Lithographing Co.), Andreas, A. T., 1839-1900. Additionally: 
Gazetteer from United States Geological Survey (geonames.usgs.gov). 

Iowa:  Sectional map of Iowa showing civil and congressional townships, all towns, post offices, railroads, streams. Compiled 
by D.W. Ensign, published by A.T. Andreas, Chicago, Ills., 1875. (Lakeside Building, Chicago, Ills. Engraved and 
printed by Chas. Shober and Co., Props. of Chicago Lithographing Co.), available at David Rumsey Map Collection 
(www.davidrumsey.com). 

Kansas:  The official state atlas of Kansas compiled from government surveys, county records and personal investigations. 
Philadelphia. L.H. Everts and Co. 1887. Copyright, 1887, L.H. Everts and Co. (with view:), Additionally: Gazetteer 
from United States Geological Survey (geonames.usgs.gov). 

Kentucky:  No sufficient map found. Only county data available. 
Louisiana:  No sufficient map found. Only county data available. 
Maine:  Mitchell, Samuel A. "Township map of the State of Maine", Drawn and engraved by W.H. Gamble, Philadelphia. 

Copyright 1887 by Wm. M. Bradley and Bro. (1890)", Publisher: John Y. Huber and Co, available at David Rumsey 
Map Collection (www.davidrumsey.com). 

Maryland:  Gazetteer from United States Geological Survey (geonames.usgs.gov). 
Massachusetts:  Mitchell, Samuel A. "Township map of the States of Massachusetts, Connecticut and Rhode Island", Drawn and 

engraved by W.H. Gamble, Philadelphia. Copyright 1887 by Wm. M. Bradley and Bro. (1890)", Publisher: John Y. 
Huber and Co, available at David Rumsey Map Collection (www.davidrumsey.com). 

Michigan:  Mitchell, Samuel A. "Township map of the States of Michigan and Wisconsin", Drawn and engraved by W.H. Gamble, 
Philadelphia. Copyright 1887 by Wm. M. Bradley and Bro. (1890)", Publisher: John Y. Huber and Co, available at 
David Rumsey Map Collection (www.davidrumsey.com). 

Minnesota:  United States Library of Congress, "Map of the state of Minnesota", The Anderson Publishing Company, Arthur 
Gibson. 

Mississippi:  No sufficient map found. Only county data available. 
Missouri:  Gazetteer from United States Geological Survey (geonames.usgs.gov). 
Montana:  In 1880 precincts were not separately returned by the enumerators. Only county data available. 
Nebraska:  The official state Atlas of Nebraska. Compiled from government surveys, county records and personal investigations. 

Philadelphia, Everts and Kirk, 1885. Copyright, 1885, Everts and Kirk. Additionally gazetteer from United States 
Geological Survey (geonames.usgs.gov). 

Nevada:  In 1880 precincts were not separately returned by the enumerators. Only county data available. 
New Hampshire:  County and township map of Vermont and New Hampshire. Copyright 1887 by William M. Bradley and Brother, John 

Y. Huber Company, Publishers, Philadelphia and St. Louis. (1890), available at David Rumsey Map Collection 
(www.davidrumsey.com). 

New Jersey:  Johnson's new Illustrated (Steel Plate) Family Atlas, With Descriptions, Geographical, Statistical, And Historical. 
Compiled, Drawn, and Engraved Under The Supervision Of J.H. Colton And A.J. Johnson. New York: Johnson And 
Browning, Formerly (Successors To J.H. Colton And Company) No. 133 Nassau Street. 1860, available at David 
Rumsey Map Collection (www.davidrumsey.com). 

New Mexico:  In 1880 precincts were not separately returned by the enumerators. Only county data are available. 
New York:  Johnson's new Illustrated (Steel Plate) Family Atlas, With Descriptions, Geographical, Statistical, And Historical. 

Compiled, Drawn, and Engraved Under The Supervision Of J.H. Colton And A.J. Johnson. New York: Johnson And 
Browning, Formerly (Successors To J.H. Colton And Company,) No. 133 Nassau Street. 1860, available at David 
Rumsey Map Collection (www.davidrumsey.com). 

North Carolina:  National Archives and Records Administration (NARA), Washington DC, Microfilm publication A3378: "Enumeration 
District Maps of the Twelfth trough Sixteenth Censuses of the United States, 1900 - 1940", County Maps on Microfilm 
Roll numbers 44 and 45. 

North Dakota:  Had not attained statehood in 1880 and did not have stable county boundaries at that time. Excluded from the dataset. 
Ohio:  United States Library of Congress, "Colton's Ohio", published by J.H. Colton (New York), 1898. 
Oklahoma:  Not included in the 1880 census and so excluded from the dataset. 
Oregon:  No sufficient map found. Only county data available. 
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Pennsylvania:  United States Library of Congress, "Pennsylvania administrative Township map", Rand McNally and Co. (Publishers), 
1898. 

Rhode Island:  Mitchell, Samuel A. "Township map of the States of Massachusetts, Connecticut and Rhode Island", Drawn and 
engraved by W.H. Gamble, Philadelphia. Copyright 1887 by Wm. M. Bradley and Bro. (1890)", Publisher: John Y. 
Huber and Co, available at David Rumsey Map Collection (www.davidrumsey.com). 

South Carolina:  National Archives and Records Administration (NARA), Washington DC, Microfilm publication A3378: "Enumeration 
District Maps of the Twelfth trough Sixteenth Censuses of the United States, 1900 - 1940", County Maps on Microfilm 
Roll number 58. 

South Dakota:  Had not attained statehood in 1880 and did not have stable county boundaries at that time. Excluded from the dataset. 
Tennessee:  No sufficient map found. Only county data available. 
Texas:  No sufficient map found. Only county data available. 
Utah:  No additional map source was found, but the 1880 MCDs could be identified using the 1940 MCD maps. 
Vermont:  County and township map of Vermont and New Hampshire. Copyright 1887 by Wm. M. Bradley and Bro., John Y. 

Huber Company, Publishers, Philadelphia and St. Louis. (1890), available at David Rumsey Map Collection 
(www.davidrumsey.com). 

Virginia: Gazetteer from United States Geological Survey (geonames.usgs.gov). 
 Washington:  In 1880 precincts were not separately returned by the enumerators. Only county data available. 
 West Virginia:  White's political map of West Virginia. Drawn and engraved by W.H. Gamble, Philadelphia. Entered according to Act 

of Congress in the year 1873 by M. Wood White in the Office of the Librarian of Congress at Washington, 1873, 
available at David Rumsey Map Collection (www.davidrumsey.com). 

 Wisconsin:  Mitchell, Samuel A. "Township map of the States of Michigan and Wisconsin", Drawn and engraved by W.H. Gamble, 
Philadelphia. Copyright 1887 by Wm. M. Bradley and Bro. (1890)", Publisher: John Y. Huber and Co. Additionally 
county maps on Lincoln county and Marathon county (Map of Wisconsin showing congressional and judicial districts. 
Copyright 1877 by Snyder, Van Vechten and Co. (Compiled and published by Snyder, Van Vechten and Co., 
Milwaukee. 1878)). Both available at David Rumsey Map Collection (www.davidrumsey.com). 

 Wyoming:  In 1880 precincts were not separately returned by the enumerators. Only county data available. 
 
 
The states excluded from our analysis are: Alaska, Hawaii and Oklahoma (which are not included in the 1880 census) and North and South Dakota (which had 
not attained statehood in 1880 and did not have stable county boundaries at that time).  
The included states for which we could not create data at the sub-county level are: Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Washington and 
Wyoming (for these 10 states the 1880 census contains a note saying that: "As the precincts in the different counties were not separately returned by the 
enumerators, the counties cannot be published in detail", which precludes obtaining information on sub-county divisions); the states of Alabama, Florida, 
Kentucky, Louisiana, Mississippi, Oregon, Tennessee and Texas (in these states we were unable to find sufficient maps to determine the location of the 1880 
MCDs). The main problem with these states was that many of the MCD entries contained numbers instead of names, such as "Beat 1" or "Precinct 5". These 
entries are much harder to find on maps than names, since there are many competing numbering schemes applied to maps of this period, and number schemes 
are changed more frequently than names. 
All MCDs with coordinates are present in one of the sources listed above apart from the following MCDs. These were found in the footnotes of the censuses 
1890 – 1930 (the number indicates the county):  
FERGUSON, 430, Arkansas; BLACKWOOD, 610, Arkansas; TREMONT, 1030, Arkansas; BRIDGE BEND, 1170, Arkansas; SPRING CREEK, 1490, 
Arkansas; HAPPY CAMP, 150, California; MOUNTAIN, 150, California; HOT SPRING, 490, California; SOUTH FORK, 490, California; HOT SPRINGS, 
550, California; OSO FLACO, 790, California; SALINAS, 790, California; SAN JOSE, 790, California; SALMON, 930, California; SOUTH, 930, California; 
CASCADE, 1030, California; LASSEN, 1030, California; BUCKEYE, 1130, California; FAIRVIEW, 1130, California; MERRITT, 1130, California; ALLEN, 
650, Illinois; ALLIN, 1130, Illinois; " ", 1770, Indiana; ELWOOD, 110, Kansas; KIOWA, 110, Kansas; LAKE CITY, 110, Kansas; MEDICINE LODGE, 110, 
Kansas; SUN CITY, 110, Kansas; MILLROOK, 670, Kansas; MILLROOK, 710, Kansas; Anthony, 750, Kansas; NOBLE, 1310, Kansas; VALLEY, 1310, 
Kansas; TWIN MOUND, 1370, Kansas; LUDWICK, 1510, Kansas; WEST WATERVILLE, 110, Maine; MUSCLE RIDGE, 130, Maine; MUSCONGUS 
ISLAND, 150, Maine; PINE, 170, Maine; BURBANK T, 210, Maine; MOUNT KINEO, 210, Maine; PERKINS, 230, Maine; HOLDEN, 250, Maine; 
PLEASANT VALLEY, 410, Maryland; DISTRICT 6, CLOBOURNES, 450, Maryland; CENTER, 1010, Minnesota; TOWNSHIP 105, RANGE 42, 1010, 
Minnesota; TOWNSHIP 103, RANGE 42, 1050, Minnesota; TOWNSHIP 103, RANGE 43, 1050, Minnesota; EAST BATTLE LAKE, 1110, Minnesota; 
TOWNSHIP 132, 1110, Minnesota; TOWNSHIP 133, RANGE 49, 1110, Minnesota; TOWNSHIP 135, RANGE 42, 1110, Minnesota; TOWNSHIP 136, 
RANGE 36, 1110, Minnesota; TOWNSHIP 136, RANGE 37, 1110, Minnesota; TOWNSHIP 137, RANGE 36, 1110, Minnesota; TOWNSHIP 137, RANGE 
37, 1110, Minnesota; TOWNSHIP 137, RANGE 38, 1110, Minnesota; RESERVE, 1230, Minnesota; TOWN 111 RANGE 38, 1270, Minnesota; DULUTH (I), 
1370, Minnesota; ONEOTA, 1370, Minnesota; SAHLMARK, 1490, Minnesota; TOWNSHIP 124 RANGE 44, 1490, Minnesota; TOWNSHIP 125 RANGE 
44, 1490, Minnesota; TOWNSHIP 126 RANGE 44, 1490, Minnesota; MORITZIUS (I), 1710, Minnesota; OTIS, 1730, Minnesota; TOWNSHIP 114 RANGE 
46, 1730, Minnesota; GERMAN, 170, Missouri; BENTON, 430, Missouri; GALLOWAY, 430, Missouri; MARION, 430, Missouri; WESTPORT, 950, 
Missouri; GERMAN, 1230, Missouri; EAST, 1430, Missouri; LYNN, 1490, Missouri; OAK GROVE, 1490, Missouri; MARION, 1530, Missouri; 
FOURCHEE, 1810, Missouri; CARONDELET, 1890, Missouri; CENTRAL, 1890, Missouri; JEFFERSON, 1950, Missouri; COURT-HOUSE ROCK, 330, 
Nebraska; SCOTT, 350, Nebraska; CEDAR VALLEY, 810, Nebraska; PLATTE, 810, Nebraska; SPRING CREEK, 830, Nebraska; SPRINGBROOK, 830, 
Nebraska; CAPITAL, 1090, Nebraska; MIDLAND, 1090, Nebraska; BOHNART, 1290, Nebraska; SPRING VALLEY, 1290, Nebraska; JOHNSON CREEK, 
1510, Nebraska; GRANT, 1690, Nebraska; LISBON, 450, New York; GRAMPION 10 Utah; TERRACE 30 Utah; HILLSDALE, 210, Utah; LITTLE PINTO, 
210, Utah; TINTIC, 230, Utah; BELLEVUE, 250, Utah; DUNCANS RETREAT, 250, Utah; GRAFTON, 250, Utah; JOHNSON, 250, Utah; PAH REAH, 250, 
Utah; SHUNESBURG, 250, Utah; KANYON, 290, Utah; MEADOWVILLE, 330, Utah; FREEDOM, 390, Utah; PETTY, 390, Utah; VERMILLION, 410, 
Utah; WILLOW BEND, 410, Utah; HAYTSVILLE, 430, Utah; BATESVILLE, 450, Utah; JACOB CITY, 450, Utah; MILL, 450, Utah; HEBRON, 530, Utah; 
PINTO, 530, Utah; PRICE CITY, 530, Utah; SILVER REEF, 530, Utah; LYNNE, 570, Utah; WALKER, 1950, Virginia; LEE, 130, West Virginia; 
SULLIVAN, 530, Wisconsin; CARPENTER, 670, Wisconsin; BRANNAN, 990, Wisconsin. 
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Note:  The number of observations (MCDs and counties) by share of agriculture in 1880 employment.  
The x-axis displays bins of size 0.05, defined by rounding down the agricultural employment share for 
each unit. For example, all units with a share of agriculture greater than or equal to 0.1 and less than 
0.15 are grouped together in bin 0.1. See the text of the paper and this web appendix for further 
discussion of the construction of the data.   
 
 

 
Note:  Mean population growth from 1880-2000 within each population bin is based on estimating 
equation (2) in the paper for MCDs in the A and B states.  95 percent confidence intervals are computed 
using robust standard errors clustered by county. Since population density bins at the extreme ends of 
the distribution typically contain few observations, the figure (but not the estimation) omits the 1 percent 
most and least dense MCDs in 1880. See the text of the paper and this web appendix for further 
discussion of the construction of the data. 
 
 

0
20

0
40

0
60

0
80

0
10

00
N

u
m

be
r 

of
 u

ni
ts

0 .2 .4 .6 .8 1
Share of agriculture in 1880 employment

MCDs, A and B Counties, all
Counties, A and B

Figure A.1:  Number of units by 1880 agriculture share
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Figure A.2:  Population growth and initial population size
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Note:  This figure reports the distribution of population density for MCDs in the A and B states in 1880 
and 2000 and predicted population density for 2000 using the Regression prediction. The x-axis uses 
population density bins, defined by rounding down log population density for each MCD to the nearest 
single digit after the decimal point. For example, all MCDs with log population density greater than or 
equal 0.1 and less than 0.2 are grouped together in bin 0.1. See the text of the paper and this web 
appendix for further discussion of the construction of the data. 

 

 
Note:  The figure uses MCD data for the sample of A and B states.  The x-axis uses population density 
bins, defined by rounding down log population density for each MCD to the nearest single digit after the 
decimal point. For example, all MCDs with log population density greater than or equal to 0.1 and less 
than 0.2 are grouped together in bin 0.1. See the text of the paper and this web appendix for further 
discussion of the construction of the data. 
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Figure A.3:  Distribution of population densities
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Note: Shares of agriculture, manufacturing and services in total employment over time in our county 
sub-periods data, using all states in these data (left panel) and A and B states (right panel).  See this 
web appendix for further details on the sector definitions and data construction. 

 

 
Note: Each line shows average log population density for an industry, calculated as the industry-
employment-weighted average of log population density in all counties.  The figure uses our county sub-
periods dataset and includes all states in these data. See the text of the paper and this web appendix for 
further details on the sector definitions and data construction. 
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Note: The black line shows mean population growth from 1880-2000 within each population density bin 
based on estimating equation (2) in the paper for MCDs in the A and B states. "Emp share prediction (A, 
M, S)" is the same as the Employment Shares prediction, except that it separates non-agriculture into 
manufacturing and services.  Population density bins are defined by rounding down log population 
density for each MCD to the nearest single digit after the decimal point. Since population density bins at 
the extreme ends of the distribution typically contain few observations, the figure (but not the estimation) 
omits the 1 percent most and least dense MCDs in 1880. See the text of the paper and this web 
appendix for further discussion of the construction of the data. 

 
 

 
Note: The black line shows mean population growth from 1880-2000 within each population density bin 
based on estimating equation (2) in the paper for MCDs in the A and B states. "Reg prediction (A, M, S)" 
is the same as the Regression prediction, except that it separates non-agriculture into manufacturing 
and services.  Population density bins are defined by rounding down log population density for each 
MCD to the nearest single digit after the decimal point. Since population density bins at the extreme 
ends of the distribution typically contain few observations, the figure (but not the estimation) omits the 1 
percent most and least dense MCDs in 1880. See the text of the paper and this web appendix for further 
discussion of the construction of the data. 
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Figure A.7:  Actual and predicted population growth
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Note: Panels A-C repeat the exercise of Figure A7 using our county sub-periods data.  Panels D-F show the difference between our baseline Employment Shares prediction 
using agriculture and non-agriculture and the augmented Employment Shares prediction that disaggregates non-agriculture into manufacturing and services. See the text of 
the paper and this web appendix for further details about the construction of the data.
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Figure A.9: Actual and predicted population growth

57



 

 
Note: The black line shows mean population growth from 1880-2000 within each population density bin 
based on estimating equation (2) in the paper for the sample of A and B states. The Regression 
prediction is based on the 1880 agricultural employment share, 1880 log population density and their 
interaction, as discussed in the paper. The Regression prediction with MCD and county characteristics 
augments this specification with the 1880 agricultural employment share and 1880 log population 
density for the county of which the MCD is part as well as their interaction, as discussed in this 
appendix. Population density bins are defined by rounding down log population density for each MCD to 
the nearest single digit after the decimal point. Since population density bins at the extreme ends of the 
distribution typically contain few observations, the figure (but not the estimation) omits the 1 percent 
most and least dense MCDs in 1880. See the text of the paper and this web appendix for further 
discussion of the construction of the data. 
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Note: This figure shows the robustness of stylized fact 2 (Figure 1, Panel B in the paper) for population growth by reproducing it for other samples. Since population density 
bins at the extreme ends of the distribution typically contain few observations, the figures (but not the estimations) omit the 1 percent most and least dense MCDs in 1880. See 
the text of the paper and this web appendix for further details on the samples used in each panel and the construction of the data. 
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Figure A.11:  Population growth robustness
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Note: This figure shows the robustness of stylized fact 2 (Figure 1, Panel B in the paper) for population growth by reproducing it for other samples. Since population density 
bins at the extreme ends of the distribution typically contain few observations, the figures (but not the estimations) omit the 1 percent most and least dense MCDs in 1880. See 
the text of the paper and this web appendix for further details on the samples used in each panel and the construction of the data. 
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Figure A.12:  Additional population growth robustness
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Note: The black (grey) lines in Panels A-C show mean actual population growth (mean predicted population growth from the Employment Shares prediction) for each 
population density bin based on estimating equation (2) in the paper for three 40-year sub-periods. Panels D-F show the mean share of agriculture in employment for each 
population density bin in the initial years of the same sub-periods. Log population density bins are defined by rounding down log population density for each MCD to the 
nearest single digit after the decimal point.  Since population density bins at the extreme ends of the distribution typically contain few observations, the figures (but not the 
estimations) focus on the density range 0-6. See the text of the paper and this web appendix for further discussion of the construction of the data. 
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Figure A.13: Actual population growth and prediction
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Note: This figure shows a relationship similar to that in Panel C of Figure 3 in the paper, but uses the 
Regression prediction instead of the Employment Shares prediction.  The figure uses our county sub-
periods data. See the text of the paper and this web appendix for a discussion of the construction of the 
figure and Regression prediction. 
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Note: This figure reproduces the stylized facts shown in Figure 1 in the paper using Brazilian instead of U.S. data. See the text of the paper and this web appendix for further 
discussion of the construction of the data.  Since population density bins at the extreme ends of the distribution typically contain few observations, in panels B, C, E and F the 
figures (but not the estimations) omit the 1 percent most and least dense AMCs in 1970.
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Figure A.15:  Stylized facts, Brazil
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Note:  This figure shows the explanatory power of the Employment Share and Regression 
prediction using Brazilian data.  The x-axis uses population density bins, defined by rounding down 
log population density for each AMC to the nearest single digit after the decimal point. For example, 
all AMCs with log population density greater than or equal to 0.1 and less than 0.2 are grouped 
together in bin 0.1.  Since population density bins at the extreme ends of the distribution typically 
contain few observations, the figure (but not the estimation) omits the 1 percent most and least 
dense AMCs in 1970. See the text of the paper and this web appendix for further discussion of the 
construction of the data. 
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Figure A.16: Population growth 1970-2000, Brazil
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Figure A.17: Existence of a unique equilibrium relative price of the agricultural good 

 
Note: This figure shows the existence of a unique equilibrium relative price of the agricultural good 
in the model, as discussed in this web appendix. 
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